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Motivation

* Space missions are becoming increasingly complex,
driving the need for agile space operations
— Requires real-time adaptation and optimization of
spacecraft missions based on changing circumstances

: : N 7N
— Operators must be prepared to resp_ond intelligently to % % @ g% %%;
unexpected events and make decisions s

An agile operation scenario

vehicle prepares unplanned operator uses | d task N vehicle stays on mission
for mission  event occurs @ Performance model replanned task prevents ,nqer que to responsive
for rapid replanning need for recovery cycle operations

* Agile space operations could significantly impact (

EPS, particularly batteries, by introducing dynamic

demands Esimaed votage Love ~_' —
* Examplesinclude: BNl

— Maneuvering spacecraft to avoid space debris Time

— Rapid reconfiguration of communication systems to
handle varying data transmission needs

Battery Voltage

Agile space operations require real-time energy management solutions to handle unpredictable power demands
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Battery Model Development Approach ’

Data-Driven and Physics-Informed Li-ion Battery Performance Modeling
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* To support agile scenarios, the goal of our battery model is to :
!
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predict a forecast of future cell voltage given information about Data-driven
the present cell voltage and a context window of past and future Model —
current | -
\\ //
Context T
Ct
Ce= [w,—1,-1,—-1,-3,-3,..] o _
system current — Predictions Big data Some data Small data
Vt 4,[ Battery Model J_, Ft No physics Some physics All physics
Priors
V, = 3.13 F, =[2.96,2.71,..]
present cell voltage cell voltage forecast Load
Fe = f(Ct, Vi)
t = trVt
| Q0Oee ° o QOO
— Formulation O @ . | O O
° ; Discharge Q
Model Inputs Physics-
: -—
— Context of C, = past and future system current, past voltage informed C)QQ Charge Q@Q
— Prior of p, = present cell voltage Model Q§ o QQ Q
* Model Outputs O@ © ©o Q Q

— Predict forecast of F;, = future cell voltage
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Data-Driven Model (EnergizerNet) Architecture

~
EnergizerNet

context 4 .
(current) Approximator Module

priors Embedding Solution
(voltage) Module Module

\_
\_

target solution
(voltage forecast)

v

S SR latent embedding

Embedding Modules Solution Modules
- Fully-Connected | . Linear
=7 ° LSTM - Gaussian
» Transformer
* Data-driven model
— input: prior cell voltage value and system current context window

— output:  forecast of future cell voltage values

* Recursive Forecasting of Telemetry
— Future prior voltages are estimated as a consensus of past voltage forecasts

-2

Context: System Current \

context: system_current
0 5000 10000 15000 20000 25000

Experimental Cell Voltage

priar: cell_voltage

0 5000 10000 15000 20000 25000

Prediction: Cell Voltage

truth: forecast(cell_voltage) prediction: forecast(cell_voltage) bnet: confidence

0 5000 10000 15000 20000 25000
Time: 0

A modular architecture that outputs both target solutions and latent embeddings of inputs
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Data-Driven Model: Training Data Design Approach

A model is only as good as its training data

* Training data considerations:

— Most performance variability occurs at transitions (change in

charge/discharge current)

* Design approach:

1. Hold as many conditions constant as possible to simplify the initial

solution
— SOH (assume BOL, limit test time on any individual cell)
— Environment (generate all data at 20°C)
2. Create many combinations of the remaining variables to capture the
bandwidth of performance
— Current (vary charge/discharge current)
— SOC (continue varying current over full capacity of cell)

* This design resulted in a matrix of [SOC, ] pairs that were
distributed over hundreds of “drive cycle”-style profiles.

Generated a comprehensive dataset (850 drive cycles) using NMC-based Li-ion cells
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Data-driven Model Results

* Data-driven model predicts voltage responses given system current

* Quantifying confidence assessments .

. . . . . . Ground Truth
— Enables operators to make informed decisions by highlighting areas -, Voltage Signal 2

where predictions are robust
— Guides further data collection efforts to improve model accuracy in
underrepresented regions

Forecast
S Cell Voltage Signal 2
> Good fit 1
©
=
(@]
> 0
truth: forecast(cell_voltage) prediction: forecast(cell_voltage) bnet: confidence 4
0 5000 10000 15000 20000 25000 30000 ) 3
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4
1
35
0 truth: forecast(cell_voltage) prediction: forecast(cell_voltage) bnet confidence
Poor fit

w
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truth: forecast(cell_voitage) prediction: forecast(cell_voltage) bnet: confidence

N

0 5000 10000 15000 20000 25000 . .
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Physics-informed Model Background

Anode Load Cathode

—
* Our physics-informed model relies on a P2D (pseudo-two dimensional)
approach O@& ©¢0 %, %@QO
Q Discharge QQ O

— The P2D Li-ion cell model assumes radial symmetry and one-dimensional Q @
charge transport within the electrode materials

— The parameters include electrochemical constants (diffusion coefficients,
reaction rates), geometrical parameters (electrode thickness, active area),
and thermodynamic properties

* Determining these parameters is challenging due to the complexity of
electrochemical phenomena

— It often requires requires both destructive and non-destructive, complex
electrochemical experiments

— This model involves a total of 23 physics-based parameters

The pseudo-2D battery model incorporates complex electrochemical parameters
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Physics-informed Model Architecture

-
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* Optimization algorithm iteratively adjusts model parameters by exploring the parameter space based on fitness evaluations
— It utilizes gradient-free, covariance matrices to guide the search direction and accelerate convergence towards optimal parameters

* Goal is to minimize the difference between model predictions and experimental data (loss function)
— Ensures that the model adheres to physical laws while fitting the data
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Physics-informed Model: Training Data Design Approach
Efficient Data Utilization for Physics-Informed Models

* Training data considerations:
— The physics-informed approach incorporates fundamental electrochemical principles (needs OCV)
— Requires significantly less training data compared to data-driven approach (roughly 2 days vs 2 months)
* The training dataset consists of charge/discharge cycles at 2 different rates
— Include a few Low Earth Orbit (LEO) cycles for realistic operational scenarios

Capacity checks LEO
at 2 rates o '_cycles_\
4.25 -
4.00 - B
_3.751 i |
o 3.50 7 Physics-informed ! = D Data-driven model
& 395 B Training dataset : U T m e Training dataset
= ! .
o = .
> 3.00 -
2.754 —— Voltage
Current B
2.50
I I I
0 10 20 30 40

Time (hour)

The physics-informed approach requires minimal data, focusing on key charge/discharge cycles to capture

essential battery behaviors
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Physics-informed Model
CMA-ES Optimization: Achieving Accurate Parameter Estimation
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Challenges of finding global optima due to high-dimensional parameter space
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Challenge of local minima due to a
large number of model parameters
Multiple parameter sets can yield
similar loss values
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Physics-informed Model: Global Parameter Optimization Approach
ML Approach: Exploring Parameter Space with Markov Chain Monte Carlo (MCMC)

* MCMC methods simulate random walks through the
parameter space of the physics-informed model

— Applied Bayesian statistical modeling and probabilistic
machine learning, in which unknown parameters are
inferred in terms of their probability distributions

* Used for global sensitivity analysis to:
— ldentify key parameters affecting model performance
— Quantify uncertainty in model predictions
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ML algorithm facilitate global sensitivity analysis, identifying key parameters and quantifying uncertainty
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Physics-informed Model: Results

Validating Model Predictions

* Our model successfully predicted battery voltage with an

average error of less than 42 mV. 321
* The physics-informed approach allows for predictions of
battery performance/behavior under dynamic operating
conditions 30.
NANVAVAVALLL :
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g —— Experimental Result —— 50% DOD
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Our model demonstrates high-fidelity voltage predictions across various operational scenarios, validated against

, experimental data
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Application of Physics-Informed Model
Versatility Across Multiple Chemistries

sIPIPIPl

* Applied the physics-informed model
framework to LFP and NCA chemistries

— Results show high accuracy in predicting
voltage profiles for both chemistries

— Demonstrates model's robustness and 4 AYVVV
adaptability to different battery types / \ /\
{ |
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* An average training data error 5 | " . |
| | |
— LFP: 51 mV 0.5 -
— NCA: 56 mV '
w
g |
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Q
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Time (hour)

The physics-informed model accurately forecasts battery performance for both LFP and NCA chemistries
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Summary: Comparison of Data-driven vs. Physics-informed Models

Big data Some data Small data
No physics Some physics All physics
I
* Data-driven Approach * Physics-informed Model
— Pros — Pros
* Leverage large datasets, adaptable to various * Based on fundamental physical principles, require
scenarios, less dependent on detailed physical less data, robust to extrapolation, optimized
understanding model parameters are easily transferred, updated,
— Cons ¥ and deployed
* Require extensive data for training, will likely — Cons X
struggle with extrapolation beyond training data * Complex to develop (requires domain

knowledge), parameter estimation can be
challenging and computationally intensive

Data-driven models excel with large datasets but struggle with extrapolation, while physics-informed models are

robust but complex to develop
4 Unclassified // Approved for Public Release
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Physics-informed Model: Results
Difference between predicted and experimentally measured voltage profiles
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Physics-informed Model
Future Work

* Battery-level model integration
* Long-term performance prediction

Battery Model Layer
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Space Battery Model Architecture
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Optimizing the optimization: loss functions

MSE (Voltage)

Luse v = %an(vexp  Vem)?
« MSE (Current)

Lyse,1 = %i(lexp — Lsim)?

=

* L-Infinity norm (Voltage)

Loo,v = V] = maxi|Vexp, i — Vsim, il
e L-Infinity norm (Current)

Lo 1 = e = maxi|lexp i — Isim, il
« Combined

L=y1Lyse,v +V2Luse,1 V3L, v + Valoo,
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