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Motivation
The Need for Intelligent Energy Management in Space

Agile space operations require real-time energy management solutions to handle unpredictable power demands

• Space missions are becoming increasingly complex, 

driving the need for agile space operations

– Requires real-time adaptation and optimization of 

spacecraft missions based on changing circumstances 

– Operators must be prepared to respond intelligently to 

unexpected events and make decisions

• Agile space operations could significantly impact 

EPS, particularly batteries, by introducing dynamic 

demands

• Examples include:

– Maneuvering spacecraft to avoid space debris

– Rapid reconfiguration of communication systems to 

handle varying data transmission needs
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Battery Model Development Approach
Data-Driven and Physics-Informed Li-ion Battery Performance Modeling

• To support agile scenarios, the goal of our battery model is to 

predict a forecast of future cell voltage given information about 

the present cell voltage and a context window of past and future 

current

– Formulation

• Model Inputs

– Context of 𝐶𝑡 = past and future system current, past voltage

– Prior of 𝑝𝑡 = present cell voltage

• Model Outputs

– Predict forecast of 𝐹𝑡 = future cell voltage

Battery Model 𝐹𝑡

𝐶𝑡

𝑉𝑡

Context

Priors

Predictions
𝐶𝑡 =  [… , −1, −1, −1, −3, −3, . . ]

𝑉𝑡 = 3.13 𝐹𝑡 = [2.96, 2.71, . . ]

𝐹𝑡 = 𝑓(𝐶𝑡, 𝑉𝑡)
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Data-Driven Model (EnergizerNet) Architecture
Embedding-Solution Modular Architecture

A modular architecture that outputs both target solutions and latent embeddings of inputs

• Data-driven model

– input: prior cell voltage value and system current context window 

– output: forecast of future cell voltage values

• Recursive Forecasting of Telemetry

– Future prior voltages are estimated as a consensus of past voltage forecasts

EnergizerNet

Approximator Module

Embedding

Module

Solution

Module

priors

(voltage)

context

(current)

target solution

(voltage forecast)

latent embedding

• Linear

• Gaussian

• Fully-Connected

• LSTM

• Transformer

Embedding Modules Solution Modules

Context: System Current

Experimental Cell Voltage

Prediction: Cell Voltage
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Data-Driven Model: Training Data Design Approach
A model is only as good as its training data

Generated a comprehensive dataset (850 drive cycles) using NMC-based Li-ion cells

• Training data considerations:

– Most performance variability occurs at transitions (change in 

charge/discharge current)

• Design approach: 

1. Hold as many conditions constant as possible to simplify the initial 

solution

– SOH (assume BOL, limit test time on any individual cell)

– Environment (generate all data at 20°C)

2. Create many combinations of the remaining variables to capture the 

bandwidth of performance

– Current (vary charge/discharge current)

– SOC (continue varying current over full capacity of cell)

• This design resulted in a matrix of [SOC, Current] pairs that were 

distributed over hundreds of “drive cycle”-style profiles.
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Data-driven Model Results
Assessing Model Accuracy and Confidence

• Data-driven model predicts voltage responses given system current

• Quantifying confidence assessments

– Enables operators to make informed decisions by highlighting areas 

where predictions are robust

– Guides further data collection efforts to improve model accuracy in 

underrepresented regions
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Physics-informed Model Background
Integrating Physical Principles into Battery Modeling

The pseudo-2D battery model incorporates complex electrochemical parameters

• Our physics-informed model relies on a P2D (pseudo-two dimensional) 

approach

– The P2D Li-ion cell model assumes radial symmetry and one-dimensional 

charge transport within the electrode materials

– The parameters include electrochemical constants (diffusion coefficients, 

reaction rates), geometrical parameters (electrode thickness, active area), 

and thermodynamic properties

• Determining these parameters is challenging due to the complexity of 

electrochemical phenomena

– It often requires requires both destructive and non-destructive, complex 

electrochemical experiments

– This model involves a total of 23 physics-based parameters 
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Physics-informed Model Architecture

• Optimization algorithm iteratively adjusts model parameters by exploring the parameter space based on fitness evaluations

– It utilizes gradient-free, covariance matrices to guide the search direction and accelerate convergence towards optimal parameters

• Goal is to minimize the difference between model predictions and experimental data (loss function)

– Ensures that the model adheres to physical laws while fitting the data

Objective Function:
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Physics-informed Model: Training Data Design Approach
Efficient Data Utilization for Physics-Informed Models

• Training data considerations:

– The physics-informed approach incorporates fundamental electrochemical principles (needs OCV)

– Requires significantly less training data compared to data-driven approach (roughly 2 days vs 2 months)

• The training dataset consists of charge/discharge cycles at 2 different rates

– Include a few Low Earth Orbit (LEO) cycles for realistic operational scenarios

Capacity checks

at 2 rates
LEO 

cycles

Physics-informed

Training dataset

Data-driven model

Training dataset

The physics-informed approach requires minimal data, focusing on key charge/discharge cycles to capture 

essential battery behaviors
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Physics-informed Model
CMA-ES Optimization: Achieving Accurate Parameter Estimation

Challenges of finding global optima due to high-dimensional parameter space

• Challenge of local minima due to a 

large number of model parameters

• Multiple parameter sets can yield 

similar loss values 
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Physics-informed Model: Global Parameter Optimization Approach
ML Approach: Exploring Parameter Space with Markov Chain Monte Carlo (MCMC)

ML algorithm facilitate global sensitivity analysis, identifying key parameters and quantifying uncertainty

• MCMC methods simulate random walks through the 

parameter space of the physics-informed model

– Applied Bayesian statistical modeling and probabilistic 

machine learning, in which unknown parameters are 

inferred in terms of their probability distributions

• Used for global sensitivity analysis to:

– Identify key parameters affecting model performance

– Quantify uncertainty in model predictions
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Physics-informed Model: Results
Validating Model Predictions

Our model demonstrates high-fidelity voltage predictions across various operational scenarios, validated against 

experimental data

• Our model successfully predicted battery voltage with an 

average error of less than 42 mV.

• The physics-informed approach allows for predictions of 

battery performance/behavior under dynamic operating 

conditions
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Application of Physics-Informed Model
Versatility Across Multiple Chemistries

The physics-informed model accurately forecasts battery performance for both LFP and NCA chemistries

• Applied the physics-informed model 

framework to LFP and NCA chemistries

– Results show high accuracy in predicting 

voltage profiles for both chemistries

– Demonstrates model's robustness and 

adaptability to different battery types

• An average training data error

– LFP: 51 mV

– NCA: 56 mV

LFP

NCA
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Summary: Comparison of Data-driven vs. Physics-informed Models
Evaluating Strengths and Limitations

Data-driven models excel with large datasets but struggle with extrapolation, while physics-informed models are 

robust but complex to develop

• Data-driven Approach

– Pros 

• Leverage large datasets, adaptable to various 

scenarios, less dependent on detailed physical 

understanding

– Cons 

• Require extensive data for training, will likely 

struggle with extrapolation beyond training data

• Physics-informed Model

– Pros 

• Based on fundamental physical principles, require 

less data, robust to extrapolation, optimized 

model parameters are easily transferred, updated, 

and deployed

– Cons 

• Complex to develop (requires domain 

knowledge), parameter estimation can be 

challenging and computationally intensive

Big data

No physics
Some data

Some physics

Small data

All physics
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Backup
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Physics-informed Model: Results
Difference between predicted and experimentally measured voltage profiles

NCALFPNMC
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Physics-informed Model
Future Work

• Battery-level model integration

• Long-term performance prediction

Space Battery Model Architecture
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Optimizing the optimization: loss functions

• MSE (Voltage)

• MSE (Current)

• L-Infinity norm (Voltage)

• L-Infinity norm (Current)

• Combined
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