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Venus Atmosphere is Relatively
Unexplored

 Mission Concept: Send a variable-altitude balloon
spacecraft to the Venus atmosphere 50-60 km above
surface

* Atmospheric chemistry measurements:
*  Assess full chemical inventory of all major chemical
cycles Venus

CENTURIES-Myrs

* Determine chemistry of aerosols and gases present A monestun PR
+ Atmospheric dynamics measurements: oo

/ Cloud top

Surface
rotation

+  Cause of super-rotation .
» Vertical transport of energy and momentum o
* Atmospheric waves

« Surface dynamics (via infrasound measurements):
*  Seismic activity
* Volcanic activity

» Surface imaging below cloud layer

* Magnetic mapping measurements i
* Only missions to the Venusian atmosphere were in

the 1980s
: . : Pre-Decisional Information -- For Public Release, .
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Temperature Batteries

;g 50 L MIDDLE CLOUDS

» Venus Aerobot mission concepts would deploy a variable altitude g40 f LOWER CLOUDS
balloon to the Venus cloud layer S30 ¢
+ Atmospheric winds carry the balloon around the planet in five days 20 1
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Ambient temperature in the range of -20 °C to +60 °C means
that the battery would warm to >80 °C during daytime
operation
Standard electronics limit upper allowable flight temperature
(AFT) to ~85 °C
Battery would need temperature margin over 85 °C
100 °C upper operation of battery selected for design work

* No current COTS high energy Li-ion batteries are

rated for such a high temperature

Relatively slow battery cycles allow focus to remain on high
temperature

Pre-Decisional Information -- For Public Release, Planning and Discussion Purposes Only 3 jpl.nasa.gov



Lunar Mission Driver for High Temperature Batteries

Launch

 Approximate Temperature range: -170 to +120 °C < Storage > l ,_and

* Thermal management limits extreme 100
temperature exposure

» Desire to survive multiple diurnal cycles (i.e. multiple
months)

» Cooperative Autonomous Distributed Robotic
Exploration (CADRE) rovers designed for 14 Earth
days (illuminated period on surface) of operation from
-10 to 75 °C (AFT)

» Used Saft MP-xtd cells in 4s1p battery
* Planned launch in late 2025-early 2026 on IM-3
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Cell Voltage

N
()

Effect of high temperature exposure

C/20 Discharge at -20 °C

Initial data

4.0 @ After 85 °C exposure

20

1.5

0 1 2 3 4 5 6

Capacity (Ah)

Charge: C/20 to 4.2 V until current dropped to <C/200 at -20 °C
Discharge: C/20 to 2.5 V until current dropped to <C/200 at -20 °C

Cells survive high temperature exposure,
but at the expense of significant
impedance growth during operation

Cells used for temperature and rate
performance testing were subsequently
screened at -20 °C

Cell exposed to very stressful conditions
(4.2 V charge, high and low rate) for 18
days

Results indicate ~60% loss of capacity at
C/20

5 jpl.nasa.gov



What is the Failure Mechanism at High Temp?

* Active materials are all stable at >100 °C Degraded Li-ion cell

Current Collector

« Electrolyte components by themselves - ’ o ’ ‘
are stable to >100 °C Cathode - i+ ‘

« The cathode electrolyte interphase (CEI) _ ‘ | ’ ‘

and solid electrolyte interphase (SEI) are
two prime candidates for instability

\\\\\

+ Both are formed by breakdown products Electrolyte + Electrolyte
from the electrolyte and serve to stabilize Separator \decompOSItlon
the cell over hundreds-thousands of products
cycles

» Breakdown products lead to stranded
I : : 1 _
lithium which leads to capacity fade Graphite SEL <ol

Anode electrolyte
interphase
CEl: cathode
electrolyte
IFloras et al 2025 J. Electrochem. Soc. 172 020514 CU I‘I‘ent CO||eCtOI’ interphase

6 jpl.nasa.gov



Electrode Replacement Studies

10 15

20 25 30 35

Cycle Number

3.00€-03 Replaced electrde, Replacing electrodes with
replaced separator, . . .
added clectrolyte lithium metal shows virtually
2.50E-03 N full capacity recovery after
25c | 100C I 25¢  !'° 100c _
= ; ! ., high temperature exposure
< 2.00E-03 = :",“..I °e,
£ ~, ! , Suggests that both cathode
§ 1s0e03 s ! : and anode are relatively
s | Ttre., . : ! stable at +100 °C
# 1.00E-03 | cileL . I
° . | Lithium inventory loss
5.00€-04 : | e Cethode (NE probable cause for capacity
! 1 New Anode (Li Metal) fade
0.00E+00 : ol °

1.0 M LiBF, in EC+EMC (1:1 vol.) + 2% VC
Graphite / NMC 111 Swagelok Cells
4.1to 3.2V, C/5 cycling

Hawkins et al. Journal of The Electrochemical Society, 2023 170 100522.
https://doi.org/10.1149/1945-7111/acfc36
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Electrode Replacement Studies

- dV/dQ analysis indicates that
loss of lithium associated with

100 °C cycling
Stage | graphite intercalation

dv/dQ (V/Ah)

2,500 :
2,000 ¢ : . . .
: - Capacity associated with
500 : other stages remains
) " Cele relatively constant
Capacity from Stage-I reduced Cycle 10 .
1,000 . ' . + Supports stability of anode (at
A . least) during high temperature
00 e -, 5o exposure
0 L )
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

Discharge Capacity (Ah)
Hawkins et al. Journal of The Electrochemical Society, 2023 170 100522.

1.0 M LiBF, in EC+EMC (1:1 vol.) + 2% VC
https://doi.org/10.1149/1945-7111/acfc36
8 jpl.nasa.gov



Prior studies of high temperature electrolytes

Prior studies of high temperature electrolytes
indicated that high EC content helped to

alleviate high temperature survivability

EC is essential to forming a good SEI, so
higher EC content is likely re-forming an SEI

as it is degraded

1.0 M LiPF4 in EC+EMC 50:50 used as

baseline

2% VC as an additive showed best
performance

o o]

A A vy NIV
o o) o) o ,/ >—N\
- Y OHO_Li+
F
VvC FEC Lithium DMAc

oxalate

Percentage of Initial Capacity (%)

110

100

920

80

70

60

50

40

30

20

10

MCMB - LiNiCoO, cells

llt:tc:; ...,,‘::

& 1.0 M LIPF6 EC+EMC (50:50 v/fv %)

# 1.0 M LiPF6 EC+EMC (50:50 wfv %) + 2% lithium oxalate
® 1.0 M LiPFG EC+EMC (50:50 wfv %) + 2% VC

o 1.0 M LIPF6 EC+EMC (50:50 wfv %) + 2% VC + 2% DMAc

‘-. - A 1.0 M LiPF6 EC+EMC (50:50 v/v %) + 2% FEC
o .ll‘l t. o 1.0 M LiPF6 EC+EMC (50:50 wiv %) + 2% LTB.
%, 'h.“ fo g%y, | W10 MUPFSECHEMC (50:50 /v %) + 4% FEC
Op - ..5:..
shie,
n N +
", 0‘
n RADSCT
ll " T tia
- ML VU
A, °i
a
60°C 80°C
A‘ -
& [ ]
5 fag,hme i‘;'s.
“n ESL 1‘033._
m o, Ay A, ’u:'..‘
Comy 80°C A ’o,.:oa
._ Y fag ts
(] & i
L] ‘ LY
- ' A
L™ iy
w LT
.y L
By

10 15 20 25 30 35 40 45 50 55
Cycle Number

Smart et al. ECS Transactions, 25 (36) 37-48 (2010)

60

9 jpl.nasa.gov



Cycle life at C/5
100 cycles at +100 °C

- - 120% 110
Commercial Cell Build and
. 100% 4 100
Testing E g
= 80% | 19 @
Custom Saft MP-xtd cells filled with JPL electrolyte: 2 o | 78.6% capacty] | 80 g
> .. =8
- 1.0 M LiPFgin EC:EMC (50:50 viv) + 2 Wt % VC + 2wt § T e £
% LiDFP S % 17 =
+ LIDFP was selected to help stabilize the CEI based on 0% | | 60 ©
prior work?!
Cells operate for 100 cycles, or 37 days to 80 % - - 20 - 0 10 w0
capacity when cycled at C/5, 100 °C Cycle
] . Cell Specific Energy vs. Voltage at -30 °C, C/30
Cells still provide reasonable energy (100 Wh/kg) at After Charge to 4.2 V at 25 °C, C/5
-30 °C at benign rates 45 s
Performance meets mission requirements for :: [ :?5
notional Venus Aerobot battery duration Sao | [ 105
Cells built into battery and vibration and g25 1 ° 5
Tvac tested to demonstrate TRL 6 €207 99 Whikg g
815} - 25 ©
T R VR NAAANAAAARANN ARSI L 30
05 + -35
0 2 20 s 2 100 20

Wang et al., lonics, 27, 4135 (2021). o Specific Energy (Wh/kg) 10 jpl.nasa.gov



Continued 100 °C Electrolyte Development

Baseline components

o)
F
F xFI,——" P /H\ CHs
F/ll F HiC o o
_ EMC
LiPFg Ethyl Methyl
Lithium Carbonate

Hexafluorophosphate

SEI formation /
stabilization
0 0
M M
o~ o o)
-/ \—/
EC VC
Ethylene Vinylene
Carbonate Carbonate

New components focused on cathode

Li

o o L
\ —
Y D/ F ’!_

LiDFOB LiDFP
Lithium Lithium
Difluoro(oxalate)borate  Difluorophospahte
CEl formation /
stabilization

F e
F‘S(O\)(LF
F7N F
TTE

1,1,2,2-tetrafluoroethyl-
2,2,3,3-tetrafluoropropyl ether

High oxidative
stability

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52

Screened 100s of electrolytes in coin cells
sealed in epoxy
Graphite anode, NMC111 cathode
Formed at room temp
Cycled at +100 °C, C/5 from4.2t0 2.5V
Identified three additional beneficial
components:

+ Lithium difluoro(oxalato)borate (LIDFOB)

Lithium difluorophosphate

« 1,1,2,2-tetrafluoroethyl-2,2,3,3-

tetrafluoropropyl! ether (TTE)

Other things that didn’t work:

« LITFSI and LiFSI, other Li salts

+ lonic liquids

- FEC

* Blends without a high EC content

11 jpl.nasa.gov



Selected Electrolytes

Li Salt Solvent Additive Abbreviation
(vv)

1.0 M LiPF; 1:1 EC:EMC 2wt % VC BL

0.25 M LIiDFOB, 1:1 EC.EMC 2wt % VC A2
1.0 M LiPF

0.25 M LiDFOB, 1:1 EC:EMC 2 Wt % VC, 2 wt B2
1.0 M LiPFg % LiDFP

0.125 M LIDFOB,  1:1:2 EC:EMC:TTE 2 Wt % VC, 2 wt D1
0.5 M LiPFg % LiDFP

0.25 M LiDFOB, 1:1:2 ECCEMC:TTE 2 Wt % VC, 2 wt D2
0.5 M LiPFg % LiDFP

5th cycle capacity turned out to be enough to
separate electrolytes

High degree of variability observed in cells
operated at high temp

Blends with TTE (solvent), LIDFOB (co-salt) and
LiDFP (additive) showed best overall performance

TTE as a co-solvent dramatically improved
reproducibility

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52

5th Cycle Cathode Specific Capacity (mAh g?)
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Long Term Cycling at 100 °C

Li Salt Solvent Additive Abbreviatio
(viviv) n
1.0 M LiPFg4 1:1 EC:EMC 2wt % VC BL, Baseline
0.125 M LiDFOB, 0.5 M 1:1:2 ECEMC:TTE 2wt % VC, 2 wt % D1
LiPFg LiDFP
0.25 M LIDFOB, 0.5 M LiPF; 1:1:2 ECEMC:TTE 2wt % VC, 2 wt % D2
LiDFP

« The D1 long term cycling data shows an average
specific capacity of three coin cells with error bars
* One cell reached 73 cycles at 100 °C and the
other two reached the 100 cycle limit with a
standard deviation of + 8.8 mAh/g

* The plotted data shows the Baseline and D2 cell
with the highest achieved cycle number for this
study

Specific Capacity (mAh g*)

—> BASELINE
120 - % —+— D2
X —$-D1

100
80
60
40

20

Cycle

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52
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EIS on 3-Electrode Cells After 100 °C

120 1 T T I I
110~
100 p=

90

Specific Capacity (mAh g?)

80~

—o— A2
- B2
= D1
—>— BASELINE

-
-
W =
-
-

5 | Rest+EIS

Cycle

Baseline: 1 M LiPF; 1:1 EC:EMC + 2
wt% VC

A2:0.25 M LiDFOB 1 M LiPFg 1:1
EC:EMC + 2 wt% VC

B2:0.25 M LIDFOB 1 M LiPFg 1:1
EC:EMC + 2 wt% VC + 2 wt% LiDFP

D1:0.125 M LIiDFOB 0.5 M LiPFg 1:1:2
EC:EMC:TTE + 2 wt% VC + 2 wt%
LiDFP

Post 5-cycles at 100 °C
Anode

Cathode

2.00

175
—o— A2
—— B2
-%- D1
—>— BASELINE

—o— A2
- B2
-¥— D1
—>— BASELINE

1.50

1.25

1.00

-Z”(Q)

0.75
0.50

0.25

0'08.00 0.25 0.50 0.75 1.00 1.25
Z'(Q)

+ Post-formation: Both cathode (< 0.15 Ohm) and anode (< 0.4

Ohm) impedance are low

2.00

» Post 5-cycle 100 °C: Significant increase in cathode impedance
(up to 3 Ohm) for all compositions except D1, anode impedance

for D1 increases more than other compositions

 TTE-containing electrolyte significantly improves CEl

stability after 100 °C cycling

Wang et al. 2024 J. Electrochem. Soc. 171
120517 DOI: 10.1149/1945-7111/ad9b52 10



T B s e ey T I I :
Charge Taper ‘a’ | ® -
0.8 Baseline ~ 0.8 D1 —
Cycle 1,80 °C [ Cycle 1,80°C ]
0.7 @ Cycle3,80°C & 07k @ Cycle3,80°C ]
~@~ Cycle5,80°C [ -@~ Cycle5,80°C 0
4 Cycle1,100°C o L i Cycle1,100°C ..
Z 06 ~f#- Cycle 3,100 °C A Z 06 P -~ Cycle 3,100 °C &
= -~ Cycle 5,100 °C 1 B - -~ Cycle 5,100 °C E
Baseline: 1 M LiPFg 1:1 EC:EMC + 2 wt% VC g g ]
_ _ 3 os 4 3 osp -
D1:0.125 M LIDFOB 0.5 M LiPFg 1:1:2 ] L i
EC:EMC:TTE + 2 wt% VC + 2 wt% LiDFP [ ]
0.4 - 0.4f -
0.3 - 03f o
" N T ., 1 PP PR L 2
925 15 30 45 60 025 15 30 45 60
Time (minutes) Time (minutes)

« Cellscharged atC/5t0 4.2V

* Held at 4.2 V until current falls below C/50 or 1 hour has passed

» Cells behave similarly at 80 °C

« TTE-containing electrolytes consistently tapered for much less time than non-TTE-containing
electrolytes at 100 °C

« Time and current passed during taper indicates formation of breakdown products, rather than
charge storage

« Corresponds to steep capacity fade

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52 10



XPS Analysis After 100 °C

T YT
1 T T T

TTTYTTTTTYT

§ g « XPS investigation of the harvested anode and
£z cathode from cells cycled at 100 °C
S g * These findings demonstrate the significant impact of
B LIDFOB, LiDFP and TTE on electrode film formation
- = at 100 °C
S R » Both cathode and anode films are substantially

F1s different when we switch from the baseline to TTE-
. ;A; containing electrolyte
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F o CF,

[ —— LUF

L O BASELINE
F o m

[ —— Fit

L

Anode
Intensity [a.u.]

Baseline: 1 M LiPF4 1:1 EC:EMC + 2 wt% VC
D1:0.125 M LiDFOB 0.5 M LiPFg 1:1:2 EC:EMC:TTE + 2 wt% VC + 2 wt% LiDFP

-
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B.E. (eV)

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52 H



What is TTE Doing?

High oxidative stability (shouldn’t

decompose e Current collector | et collector ______|

p - ) . . ;::j:i::;::i::::if:::Z'?;i:i;::i:’.’;i:::I:i;::I:Z:Z;I:I:Z:Z:::::i;;i;i;:‘ [_iCoO2 i;:;:;i:'j::;?::iiifgi:Z:i;:;:;f:i;f;ififZ;iti12:Z;Z;I:i;Z;Z:i:;;:;i;i;;;i
Low polarity means less interaction d CEl
with Lit Electrolyte oxidation 4\

Changes the CEI and SEI

Likely changes electrolyte solvation
structure SEl

- ili 3.0v Electrolyte reduction dissolution 30V
Possibly affects solubility of SEI and & Li deposition
CEI components?

- ROCO,Li, Li,CO,, LiF ...
- TTE may improve high temperature SEIl + Li 2 il .

. Li- metal Li- metal
performance by bemg a worse solvent Current collector Current collector

for SEI and CEI products
. - . . Zhang et al., Energy Storage Mater., 14, 1 (2018)
We did not find strong evidence to doi.org/10.1016/j.ensm.2018.02.016.
support this hypothesis, but it’s also
consistent with our observations

6/6/2025 17 jpl.nasa.gov



Custom
Saft MPs

Conclusions

* Demonstrated TRL 6 battery that could Custom Moli 18650s
support a notional Venus aerobot R
mission and future lunar missions !
surviving multiple days

« Continued high temperature electrolyte
development has shown promise in lab
cells

« TTE as a co-solvent dramatically
improved performance at 100 °C

« CEl stabilization is clearly important
 How TTE stabilizes CEl is still unclear

» 100x custom 18650s have been
procured with high temp electrolytes to
demonstrate new formulations in high
energy designs

6/6/2025 18 jpl.nasa.gov
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