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Venus Atmosphere is Relatively 

Unexplored

Pre-Decisional Information -- For Public Release, 

Planning and Discussion Purposes Only 
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• Mission Concept:  Send a variable-altitude balloon 

spacecraft to the Venus atmosphere 50-60 km above 

surface

• Atmospheric chemistry measurements:
• Assess full chemical inventory of all major chemical 

cycles

• Determine chemistry of aerosols and gases present

• Atmospheric dynamics measurements: 
• Cause of super-rotation

• Vertical transport of energy and momentum

• Atmospheric waves

• Surface dynamics (via infrasound measurements):
• Seismic activity

• Volcanic activity

• Surface imaging below cloud layer

• Magnetic mapping measurements

• Only missions to the Venusian atmosphere were in 

the 1980s
• Short-lived, fixed altitude balloon

3.5 m 

diameter Vega 

Balloon probe
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Venus Mission Driver for High 

Temperature Batteries
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• Venus Aerobot mission concepts would deploy a variable altitude 

balloon to the Venus cloud layer

• Atmospheric winds carry the balloon around the planet in five days 

with 60 hours in sunlight and 60 hours in darkness

Bugga et al. Acta Astronautica 197 (2022) 69–80

• Ambient temperature in the range of -20 °C to +60 °C means 

that the battery would warm to >80 °C during daytime 

operation

• Standard electronics limit upper allowable flight temperature 

(AFT) to ~85 °C

• Battery would need temperature margin over 85 °C

• 100 °C upper operation of battery selected for design work

• No current COTS high energy Li-ion batteries are 

rated for such a high temperature

• Relatively slow battery cycles allow focus to remain on high 

temperature

Pre-Decisional Information -- For Public Release, Planning and Discussion Purposes Only 
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Lunar Mission Driver for High Temperature Batteries
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• Approximate Temperature range: -170 to +120 °C

• Thermal management limits extreme 

temperature exposure

• Desire to survive multiple diurnal cycles (i.e. multiple 

months)

• Cooperative Autonomous Distributed Robotic 

Exploration (CADRE) rovers designed for 14 Earth 

days (illuminated period on surface) of operation from 

-10 to 75 °C (AFT)

• Used Saft MP-xtd cells in 4s1p battery

• Planned launch in late 2025-early 2026 on IM-3

Pre-Decisional Information -- For Public Release, 

Planning and Discussion Purposes Only 
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Effect of high temperature exposure

• Cells survive high temperature exposure, 

but at the expense of significant 

impedance growth during operation

• Cells used for temperature and rate 

performance testing were subsequently 

screened at -20 °C

• Cell exposed to very stressful conditions 

(4.2 V charge, high and low rate) for 18 

days

• Results indicate ~60% loss of capacity at 

C/20

5

Charge: C/20 to 4.2 V until current dropped to <C/200 at -20 °C

Discharge: C/20 to 2.5 V until current dropped to <C/200 at -20 °C
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What is the Failure Mechanism at High Temp?

• Active materials are all stable at >100 °C

• Electrolyte components by themselves 

are stable to >100 °C

• The cathode electrolyte interphase (CEI) 

and solid electrolyte interphase (SEI) are 

two prime candidates for instability

• Both are formed by breakdown products 

from the electrolyte and serve to stabilize 

the cell over hundreds-thousands of 

cycles

• Breakdown products lead to stranded 

lithium which leads to capacity fade1

6

1Floras et al 2025 J. Electrochem. Soc. 172 020514
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Electrode Replacement Studies

• Replacing electrodes with 

lithium metal shows virtually 

full capacity recovery after 

high temperature exposure

• Suggests that both cathode 

and anode are relatively 

stable at +100 °C

• Lithium inventory loss 

probable cause for capacity 

fade
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1.0 M LiBF4 in EC+EMC (1:1 vol.) + 2% VC

Graphite / NMC 111 Swagelok Cells

4.1 to 3.2 V, C/5 cycling

Hawkins et al. Journal of The Electrochemical Society, 2023 170 100522. 

https://doi.org/10.1149/1945-7111/acfc36
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Electrode Replacement Studies

• dV/dQ analysis indicates that 

loss of lithium associated with 

Stage I graphite intercalation

• Capacity associated with 

other stages remains 

relatively constant

• Supports stability of anode (at 

least) during high temperature 

exposure
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1.0 M LiBF4 in EC+EMC (1:1 vol.) + 2% VC
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jpl.nasa.gov

Prior studies of high temperature electrolytes

• Prior studies of high temperature electrolytes 

indicated that high EC content helped to 

alleviate high temperature survivability

• EC is essential to forming a good SEI, so 

higher EC content is likely re-forming an SEI 

as it is degraded

• 1.0 M LiPF6 in EC+EMC 50:50 used as 

baseline

• 2% VC as an additive showed best 

performance

9

Smart et al. ECS Transactions, 25 (36) 37-48 (2010)

MCMB - LiNiCoO2 cells

VC FEC Lithium 

oxalate

DMAc LTB
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Commercial Cell Build and 

Testing

• Custom Saft MP-xtd cells filled with JPL electrolyte:

• 1.0 M LiPF6 in EC:EMC (50:50 v/v) + 2 wt % VC + 2 wt 

% LiDFP

• LiDFP was selected to help stabilize the CEI based on 

prior work1

• Cells operate for 100 cycles, or 37 days to 80 % 

capacity when cycled at C/5, 100 °C

• Cells still provide reasonable energy (100 Wh/kg) at 

-30 °C at benign rates

• Performance meets mission requirements for 

notional Venus Aerobot battery duration

• Cells built into battery and vibration and 

Tvac tested to demonstrate TRL 6

101Wang et al., Ionics, 27, 4135 (2021).
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Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52

LiPF6

Lithium 

Hexafluorophosphate

EC
Ethylene 

Carbonate

VC
Vinylene 

Carbonate

EMC
Ethyl Methyl 

Carbonate

LiDFOB
Lithium 

Difluoro(oxalate)borate

LiDFP
Lithium 

Difluorophospahte

TTE
1,1,2,2-tetrafluoroethyl-

2,2,3,3-tetrafluoropropyl ether

Continued 100 °C Electrolyte Development 
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• Screened 100s of electrolytes in coin cells 

sealed in epoxy

• Graphite anode, NMC111 cathode

• Formed at room temp

• Cycled at +100 °C, C/5 from 4.2 to 2.5 V

• Identified three additional beneficial 

components:

• Lithium difluoro(oxalato)borate (LiDFOB)

• Lithium difluorophosphate

• 1,1,2,2-tetrafluoroethyl-2,2,3,3-

tetrafluoropropyl ether (TTE)

• Other things that didn’t work:

• LiTFSI and LiFSI, other Li salts

• Ionic liquids

• FEC

• Blends without a high EC content

Baseline components

New components focused on cathode

SEI formation / 

stabilization

CEI formation / 

stabilization

High oxidative 

stability
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Li Salt Solvent 

(v/v)

Additive Abbreviation

1.0 M LiPF6 1:1 EC:EMC 2 wt % VC BL

0.25 M LiDFOB, 

1.0 M LiPF6

1:1 EC:EMC 2 wt % VC A2

0.25 M LiDFOB, 

1.0 M LiPF6

1:1 EC:EMC 2 wt % VC, 2 wt 

% LiDFP

B2

0.125 M LiDFOB, 

0.5 M LiPF6

1:1:2 EC:EMC:TTE 2 wt % VC, 2 wt 

% LiDFP

D1

0.25 M LiDFOB, 

0.5 M LiPF6

1:1:2 EC:EMC:TTE 2 wt % VC, 2 wt 

% LiDFP

D2

Selected Electrolytes
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• 5th cycle capacity turned out to be enough to 

separate electrolytes

• High degree of variability observed in cells 

operated at high temp

• Blends with TTE (solvent), LiDFOB (co-salt) and 

LiDFP (additive) showed best overall performance

• TTE as a co-solvent dramatically improved 

reproducibility

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52



Li Salt Solvent 

(v/v/v)

Additive Abbreviatio

n

1.0 M LiPF6 1:1 EC:EMC 2 wt % VC BL, Baseline

0.125 M LiDFOB, 0.5 M 

LiPF6

1:1:2 EC:EMC:TTE 2 wt % VC, 2 wt % 

LiDFP

D1

0.25 M LiDFOB, 0.5 M LiPF6 1:1:2 EC:EMC:TTE 2 wt % VC, 2 wt % 

LiDFP

D2
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• The D1 long term cycling data shows an average 

specific capacity of three coin cells with error bars
• One cell reached 73 cycles at 100 °C and the 

other two reached the 100 cycle limit with a 
standard deviation of ± 8.8 mAh/g

• The plotted data shows the Baseline and D2 cell 

with the highest achieved cycle number for this 

study

Long Term Cycling at 100 °C

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52



Baseline: 1 M LiPF6 1:1 EC:EMC + 2 

wt% VC

A2: 0.25 M LiDFOB 1 M LiPF6 1:1 

EC:EMC + 2 wt% VC

B2: 0.25 M LiDFOB 1 M LiPF6 1:1 

EC:EMC + 2 wt% VC + 2 wt% LiDFP

D1:0.125 M LiDFOB 0.5 M LiPF6 1:1:2 

EC:EMC:TTE + 2 wt% VC + 2 wt% 

LiDFP

Cathode Anode

• Post-formation: Both cathode (< 0.15 Ohm) and anode (< 0.4 

Ohm) impedance are low
• Post 5-cycle 100 °C: Significant increase in cathode impedance 

(up to 3 Ohm) for all compositions except D1, anode impedance 

for D1 increases more than other compositions

• TTE-containing electrolyte significantly improves CEI 

stability after 100 °C cycling

Post 5-cycles at 100 °C

10

EIS on 3-Electrode Cells After 100 °C

Wang et al. 2024 J. Electrochem. Soc. 171

120517 DOI: 10.1149/1945-7111/ad9b52



Baseline: 1 M LiPF6 1:1 EC:EMC + 2 wt% VC

D1:0.125 M LiDFOB 0.5 M LiPF6 1:1:2 

EC:EMC:TTE + 2 wt% VC + 2 wt% LiDFP

• Cells charged at C/5 to 4.2 V

• Held at 4.2 V until current falls below C/50 or 1 hour has passed

• Cells behave similarly at 80 °C

• TTE-containing electrolytes consistently tapered for much less time than non-TTE-containing 

electrolytes at 100 °C

• Time and current passed during taper indicates formation of breakdown products, rather than 

charge storage

• Corresponds to steep capacity fade

10

Charge Taper

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52
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• XPS investigation of the harvested anode and 

cathode from cells cycled at 100 °C

• These findings demonstrate the significant impact of 

LiDFOB, LiDFP and TTE on electrode film formation 

at 100 °C
• Both cathode and anode films are substantially 

different when we switch from the baseline to TTE-

containing electrolyte

XPS Analysis After 100 °C

Baseline: 1 M LiPF6 1:1 EC:EMC + 2 wt% VC

D1:0.125 M LiDFOB 0.5 M LiPF6 1:1:2 EC:EMC:TTE + 2 wt% VC + 2 wt% LiDFP

Wang et al. 2024 J. Electrochem. Soc. 171 120517 DOI: 10.1149/1945-7111/ad9b52
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What is TTE Doing?

• High oxidative stability (shouldn’t 

decompose)

• Low polarity means less interaction 

with Li+

• Changes the CEI and SEI

• Likely changes electrolyte solvation 

structure

• Possibly affects solubility of SEI and 

CEI components?

• TTE may improve high temperature 

performance by being a worse solvent 

for SEI and CEI products

• We did not find strong evidence to 

support this hypothesis, but it’s also 

consistent with our observations

176/6/2025

Zhang et al., Energy Storage Mater., 14, 1 (2018) 

doi.org/10.1016/j.ensm.2018.02.016.
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Conclusions

• Demonstrated TRL 6 battery that could 

support a notional Venus aerobot 

mission and future lunar missions 

surviving multiple days

• Continued high temperature electrolyte 

development has shown promise in lab 

cells

• TTE as a co-solvent dramatically 

improved performance at 100 °C

• CEI stabilization is clearly important

• How TTE stabilizes CEI is still unclear

• 100x custom 18650s have been 

procured with high temp electrolytes to 

demonstrate new formulations in high 

energy designs

6/6/2025 18

Custom Moli 18650s

Custom 

Saft MPs
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