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Challenges in Space Solar: Cost, Scalability & Radiation

Exponentially falling launch costs have led to 
hardware becoming a significant cost bottleneck

Solar arrays and power subsystems represent 
20–40% of satellite hardware costs, especially for 
SmallSats and megaconstellations2

Unique Requirements of Space
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High efficiency, high cost III-V solar cells
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[1] https://www.visualcapitalist.com/the-cost-of-space-flight/
[2] https://www.nasa.gov/smallsat-institute/sst-soa/power-
subsystems/#3.2.1



Traditional III-V solar cells cost $60-100/W, 
two orders of magnitude greater than 
terrestrial Si3

 High-cost, low-throughput epitaxial 
growth

 Complex post-processing and materials
o Limited substrate reuse techniques
o Metallization

Rethinking III-V Solar Fabrication

Current epitaxial techniques are intractable 
for cost-sensitive space applications
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[3] K. Horowitz, T. Remo, B. Smith, and A. Ptak, “A techno-economic 
analysis and cost reduction roadmap for III-V solar cells,” National 
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Reframing III-V device fabrication by prioritizing cost-effective, scalable processes which are 
compatible with next-generation, novel architectures 

Rethinking III-V Solar Fabrication

o Small batch, low-throughput4

o Complex growth process
o Variable doping profile

o In-line, industry-scalable
o Move to thinner substrates

Homojunction formation 
through epitaxial doping

Heterojunction formation 
through carrier-selective contacts
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[4] A. Greenway et al., “Low-cost approaches to III-V semiconductor 
growth for photovoltaic applications,” ACS Energy Letters, vol. 2(10), 
pp.2270-2282, 2017.



Offers efficient carrier selectivity with unique 
material and process advantages

o Potential for excellent interface passivation 

o Potential for low-temperature, high-
throughput techniques like sputtering

o No lattice-matching or heavy diffusion doping

o Usage of Earth-abundant, low-cost materials

Demonstrated at industrial scale for Si 
heterojunction solar cells

Transition Metal Oxides for Heterojunction Solar Cells
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Radiation Tolerance

InP Offers High Defect Tolerance

o Non-ionizing energy loss (NIEL) 
values for InP (~10-2 MeV cm2/g for 
3 MeV protons) are the lowest 
amongst space solar cell materials5

o Lower deep-level defect formation 
energy6

o Higher rate of room-temperature 
and minority-carrier injection 
enhanced annealing6

Growth Tolerance
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[5] R. Walters et al., “Space radiation effects in InP solar cells,” IEEE 
Transactions on Nuclear Science, vol. 38(6), pp. 1153-1158, 1991.

[6] Yamaguchi et al., “Radiation Resistance of InP-Related Materials,” 
Jpn. J. Appl. Phys. 34:6222, 1995.
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Radiation Tolerance

InP Offers High Defect Tolerance

o Lower thermal expansion 
coefficient exhibiting better 
stability during crystal growth, 
resulting in fewer defects7

o No process limiting EL2 defect 
as compared to GaAs

o Longer minority carrier diffusion 
lengths and low surface 
recombination velocity6,8,9

Growth Tolerance
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[7] M. Kaminska., “EL2 Defect in GaAs,” Phys. Scr. vol. T19B, pp. 551, 1987.

[8] H. Joyce et al., “Electronic properties of GaAs, InAs and InP nanowires studied 
by terahertz spectroscopy,” Nanotechnology, vol. 24(21), pp. 214006, 2013.

[9] K. Bulashevich and S. Y. Karpov, “Impact of surface 
recombination on efficiency of III-nitride light-emitting diodes,” 
PSS RRL, vol. 10(6), pp. 480-484, 2016.
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Device Processing
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Assumptions
o Thinner substrates will have a similar effect on 

substrate cost as ELO reuse processing  

o 20% AM1.5 efficient fully sputtered 
architecture is achievable

Cost Analysis

Reduced layer growth cost from 
$11/W to $1.50/W

Aim to target two key, highlighted areas of cost reduction3

o Epitaxial growth costs
o Metallization

26% 10%

$41/W

Reduced per gram cost of front contact 
material (Ag: $0.55/g vs. Au: $43/g)* 

Sputtered 
Al2O3/TiO2

*Further development of Ni/Al front contact for space-grade is necessary
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ZnO Electron-Selective Contact for InP

Cell efficiency of 7.27%
o ZnO clearly 

demonstrates barrier-
free carrier extraction

o Without emitter 
thinning, ARC, or 
minimizing shading loss 
(10%) 

o Record for fully 
sputtered InP device 
architecture (previously 
6.02%)10 
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ZnO Electron-Selective Contact for InP

o Consistent sheet resistances of ~67 Ω/sq for ITO
o ZnO was too resistive to measure 

o Maintains smooth surface morphologies, RMS 
roughness of 0.4 nm

o RF sputtering at low temperatures minimizes 
interfacial damage with uniform nanocrystalline 
ZnO coverage11 
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[11] P. Hajara, T. P. Rose, K. J. Saji, “Effect of substrate temperature 
and RF power on the structural and optical properties of sputtered 
ZnO thin films,” J. Phys.: Conf. Ser. vol. 2357, pp. 012018, 2022.



Significant Potential for Advancement

Novel, multilayer 
carrier-selective 

contacting schemes

Doping for band 
alignment 

control

Interfacial 
treatment
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Interfacial Treatment – H2 Plasma

Hydrogenation has been used to passivate 
shallow Zn acceptors and form a charge-
depleted layer in the bulk12

o Challenges: Damaging InP surface (due 
to In-droplet formation) and difficult 
reproducibility12

Jsc: 27.6 mA/cm2

Voc: 702 mV
FF: 76.1%
η (AM0): 10.79%

Introducing Ar to stabilize H2 plasma, mitigating 
surface roughening and lowered J02 by an order 
of magnitude

12

[12] B. Gupta et al., “Unveiling the role of H2 plasma for efficient InP 
solar cells,” Solar RRL, vol. 7(6), pp. 2200868, 2023.



Oxygen Vacancy and Metal Doping

o Optimization of 
oxygen vacancies 
presents a trade-off 
between n-type 
conductivity, charge 
carrier transport, and 
increased visible light 
absorption

o Confirmed bandgap 
narrowing as 
increased oxygen 
vacancies using UPS
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Multilayer Oxide Systems

Preliminary demonstration 
of cascading band alignment 
for increased Voc

Attempting to decouple 
passivation and carrier 
extraction + H2 plasma

Jsc: 28.8 mA/cm2

Voc: 809 mV
FF: 76.1%
η (AM0): 12.91%

AlOx: 
2 nm
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Future Work

o Optimization of electron-selective contact
o Going to thinner ESC
o Optimizing oxygen vacancy doping

o Improved passivation of space charge region either through 
interfacial treatment or multilayer system

o Radiation testing for electronic stability of non-epitaxial device

o Immediate pathway to 15% AM0 efficiency:
o Reduced front contact coverage
o Addition of lower index ARC
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Radiation Tolerant Nanowire Solar Cells

Application to Next-Generation Approaches

o Effectively decoupling light absorption 
and charge carrier extraction vectors

o Demonstrated intrinsic radiation 
tolerance due to reduced dimensionality 
and diffusion lengths13 

Fundamental Challenges
1. Reduced dimensionality results in 

limited light absorption
2. High surface-to-volume ratio results in 

higher rates of non-radiative 
recombination (defects)

3. Epitaxial dopant incorporation to form 
radial junctions is quite complicated 
and variable

Thinner Substrates/Spalled InP

Non-epitaxial carrier-selective contacts enable radial junction 
nanowires without dopant incorporation 
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[13] P. Espinet-Gonzalez et al., “Nanowire solar cells: a new radiation 
hard PV technology for space applications,” IEEE J. Photovolt., vol. 
10(2), pp. 502–507, 2020. 



Radiation Tolerant Nanowire Solar Cells

Application to Next-Generation Approaches

Integrating transition metal oxide-based carrier-
selective contacts with spalled InP spalled thin 
films

o Reduced material cost 

o Improved radiation tolerance from thinner 
substrates

Thinner Substrates/Spalled InP

Preliminary results, using TiO2 ALD, demonstrate 
8.9% efficiency (under AM1.5) on 15 μm spalled 
InP thin film14
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[14] B. Gupta et al., “Mechanically Exfoliated InP Thin Films for Solar 
Energy Conversion Devices,” Small Science, vol. 4(12), 2024.



Conclusions

1. Present 7.27% efficient (under AM0) fully 
sputtered InP solar cell using ZnO as an 
electron-selective contact

2. Demonstrate significant potential in cost-
efficiency using less complex and industry 
scalable techniques 

3. Highlight large parameter space and multiple 
pathways to enhanced device performance, 
with preliminary results achieving an efficiency 
of 12.91%
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o Indium processed as zinc concentrate 
byproduct, diffused in occurrence. 

o Potential for distributed refining but low 
market demand currently.

o Gallium for comparison: significant 
export controls from China, which 
accounts for 99% of worldwide 
primary low-purity gallium 
production

o Lower toxicity and import regulation

InP as a Scalable Solution

Indium

Gallium

[1] USGS



Designing Non-Epitaxial Carrier-Selective Contacts
Literature

Oxides Device Type Jsc [mA/cm2] Voc [mV] FF [%] Efficiency [%]

1TiO2/InP Planar 30.5 785 80.5 19.2

*2Ta2O5/InP Planar 30.1 822 77 19.1

*3ZnO/InP Planar 29.4 819 75.23 18.1

*4ZnO/GaAs Planar 26.2 890 79.2 18.5

*5Ferri-hydrite/InP Planar 28.6 761 76.2 16.6

6ZnO/InP Nanowire 31.3 736 74.6 17.1

[1] Yin et al., ACS Photonics. 1(12), 1245-1250 (2014). 
[2] Narangari et al., Nanoscale. 11, 7497-1505 (2019). 
[3] Raj et al., J. Phys. D: Appl. Phys. 51(39), (2014). 

[4] Raj et al., ACS Appl. Energy Mat. 4(2), 1356-1364 (2021). 
[5] Gupta et al., ACS Appl. Mat. & Inter. 15(38), 44912-44920 (2023). 
[6] Raj et al., ACS Nano. 13(10), 12015-12023 (2019). 



Loughborough Oxide Thicknesses – Ellipsometry + AFM

Oxide Nominal Thickness (nm) Fitted Thickness (nm) Oxide Regrowth Roughness (nm) RMSE

ITO 60 66 Yes – 7.3nm 2.6 10.7

ITO 300

ZnO 10 7.8 Hard to Distinguish 1.2 8.3

Surface Substrate Temp. (°C) O2 Content (% in Ar) Nominal Thickness (nm) RMS Roughness

Bare InP - - - 1.03

ZnO 100 1 10 0.41

ITO 300 0.56 70 2.37



Field Enhancement through Engineered Light-Trapping

Design Space Screening using Full-Field Simulation

d = 188nm, pitch = 400nm – HE11 mode

Deconvolution of light absorption by 
understanding individual 
mechanisms:
1. Reduced reflection at front 

surface
2. Fabry-Perot modes due to 

constructive interference of 
specular reflected waves

3. Identify individual waveguide 
modes from scattering
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