

Developing Transition Metal Oxide-Based Carrier-Selective Contacts for Non-Epitaxial InP Solar Cells

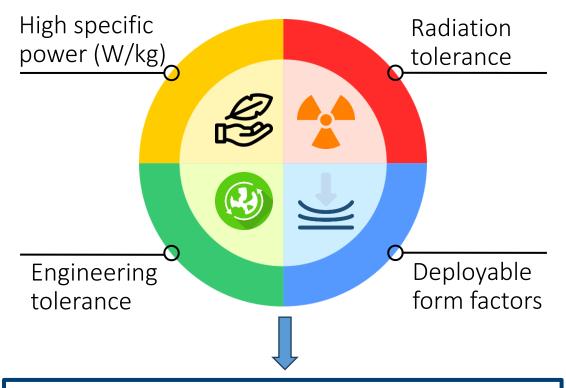
Anish Chaluvadi¹, Luksa Kujovic², Adam Law², John M. Walls², Hannah Joyce³, Louise Hirst^{1,4}

¹Department of Materials Science and Metallurgy, University of Cambridge

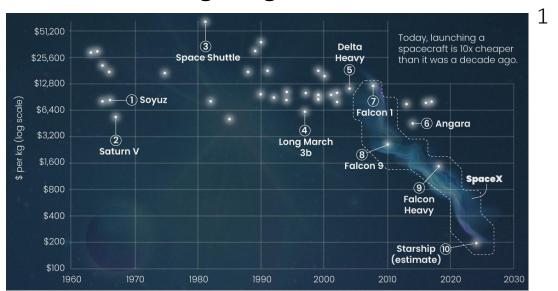
²Centre for Renewable Energy Systems Technology, Loughborough University

³Department of Engineering, University of Cambridge

⁴Cavendish Laboratory, Department of Physics, University of Cambridge


42nd Space Power Workshop – Advanced Concepts Session, April 30, 2025

Challenges in Space Solar: Cost, Scalability & Radiation



Unique Requirements of Space

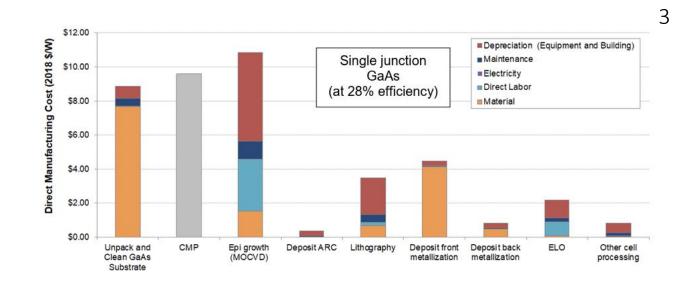
High efficiency, high cost III-V solar cells

Exponentially falling launch costs have led to hardware becoming a significant cost bottleneck

Solar arrays and power subsystems represent **20–40% of satellite hardware costs**, especially for SmallSats and megaconstellations²

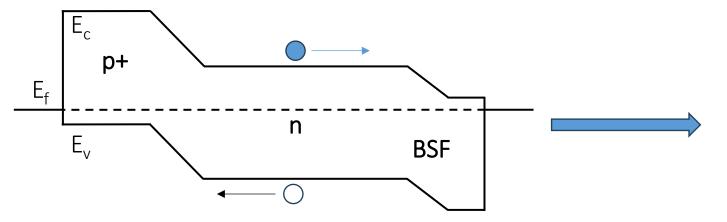
Rethinking III-V Solar Fabrication

Traditional III-V solar cells cost \$60-100/W, two orders of magnitude greater than terrestrial Si³

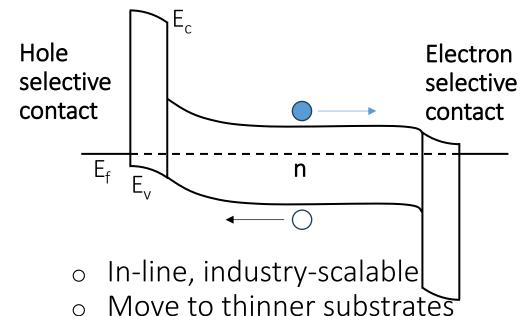

High-cost, low-throughput epitaxial growth

- Limited substrate reuse techniques
- Metallization

Current epitaxial techniques are intractable for cost-sensitive space applications



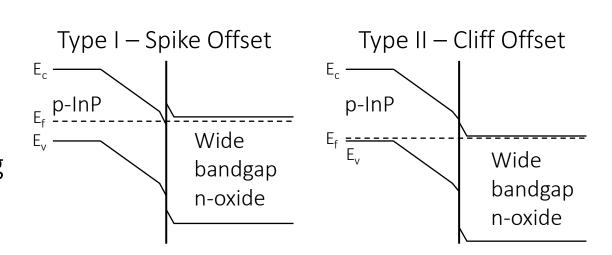
Rethinking III-V Solar Fabrication


Reframing III-V device fabrication by **prioritizing cost-effective**, **scalable** processes which are compatible with next-generation, novel architectures

Homojunction formation through epitaxial doping

- Small batch, low-throughput⁴
- Complex growth process
- Variable doping profile

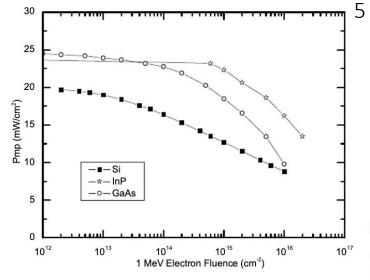
Heterojunction formation through carrier-selective contacts

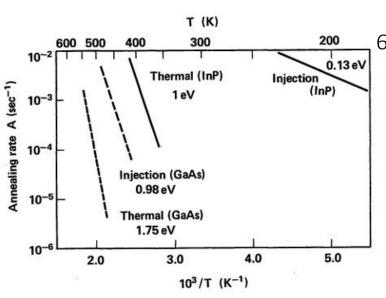

Transition Metal Oxides for Heterojunction Solar Cells

Offers efficient carrier selectivity with unique material and process advantages

- Potential for excellent interface passivation
- Potential for low-temperature, highthroughput techniques like sputtering
- No lattice-matching or heavy diffusion doping
- Usage of Earth-abundant, low-cost materials

Demonstrated at industrial scale for Si heterojunction solar cells

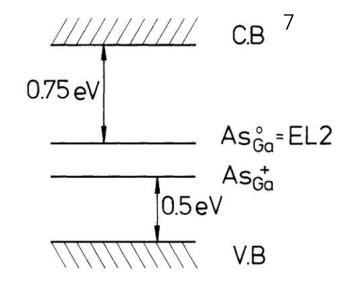

InP Offers High Defect Tolerance

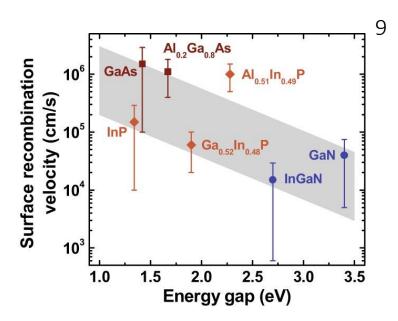


Radiation Tolerance

- Non-ionizing energy loss (NIEL)
 values for InP (~10⁻² MeV cm²/g for
 3 MeV protons) are the lowest
 amongst space solar cell materials⁵
- Lower deep-level defect formation energy⁶
- Higher rate of room-temperature and minority-carrier injection enhanced annealing⁶

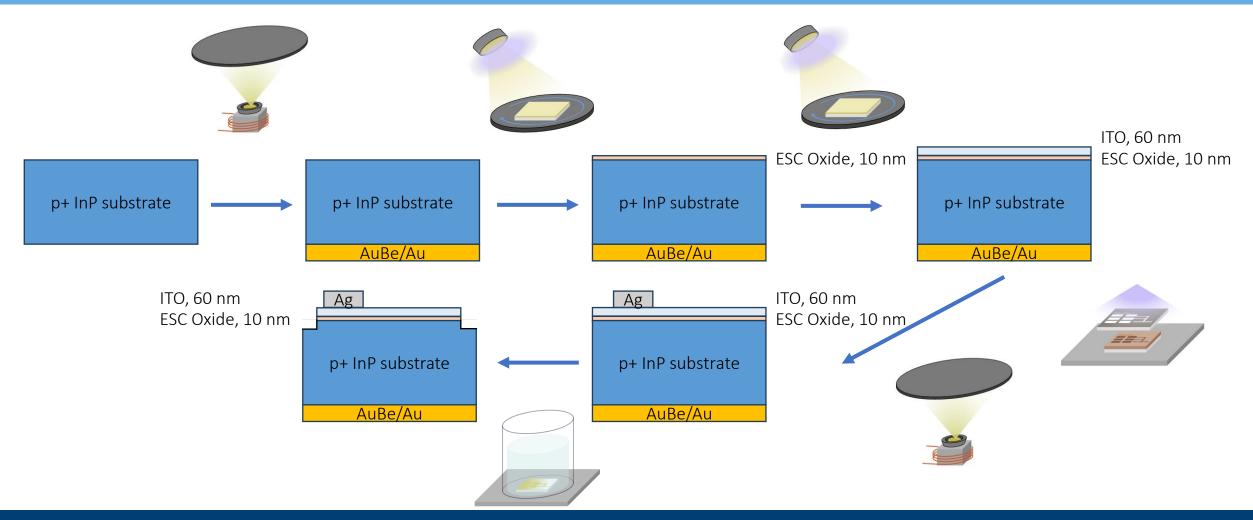
Growth Tolerance


InP Offers High Defect Tolerance



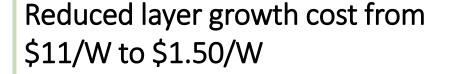
Radiation Tolerance

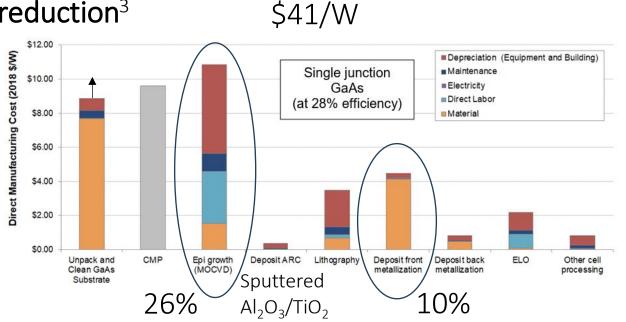
- Lower thermal expansion coefficient exhibiting better stability during crystal growth, resulting in fewer defects⁷
 - No process limiting EL2 defect as compared to GaAs
- Longer minority carrier diffusion lengths and low surface recombination velocity^{6,8,9}


Growth Tolerance

Device Processing

Cost Analysis




Aim to target two key, highlighted areas of cost reduction³

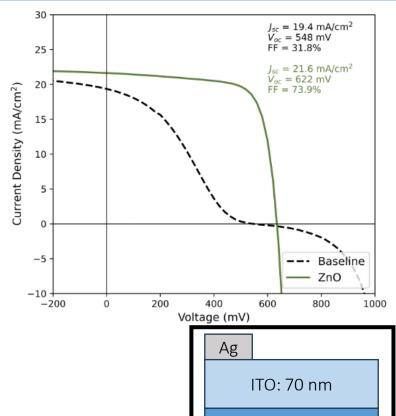
- Epitaxial growth costs
- Metallization

Assumptions

- Thinner substrates will have a similar effect on substrate cost as ELO reuse processing
- 20% AM1.5 efficient fully sputtered architecture is achievable

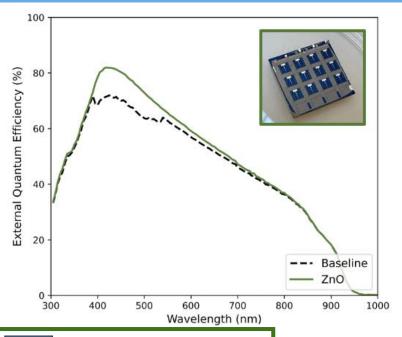
Reduced per gram cost of front contact material (Ag: \$0.55/g vs. Au: \$43/g)*

*Further development of Ni/Al front contact for space-grade is necessary

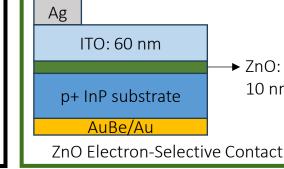


ZnO Electron-Selective Contact for InP

Cell efficiency of 7.27%

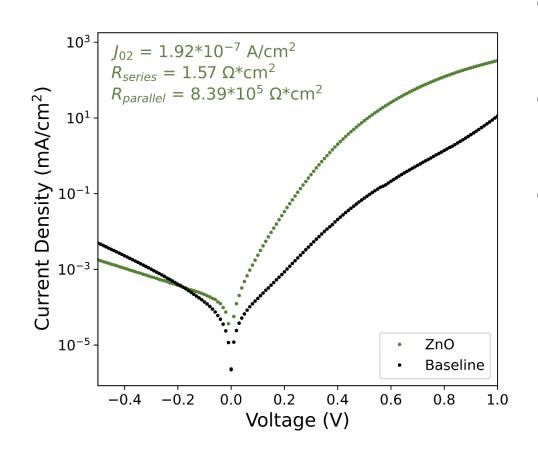

- o ZnO clearly demonstrates barrierfree carrier extraction
- Without emitter thinning, ARC, or minimizing shading loss (10%)
- Record for fully sputtered InP device architecture (previously 5.020/110

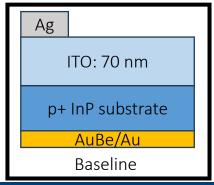
p+ InP substrate

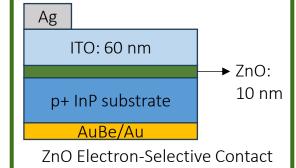

AuBe/Au

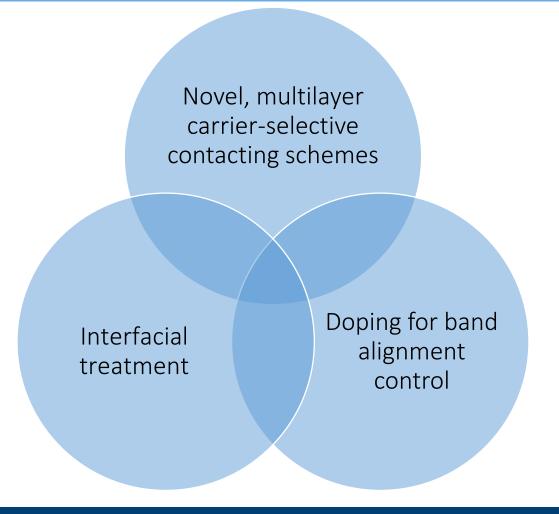
Baseline

→ 7nO:

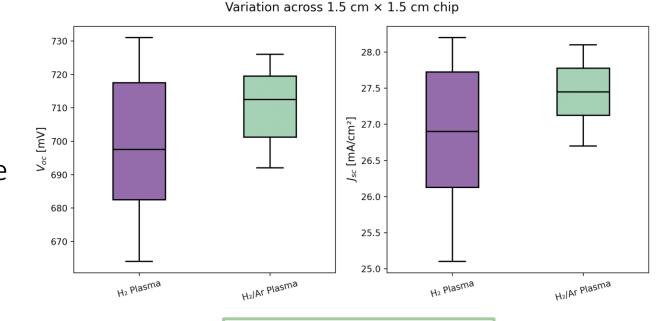

10 nm




ZnO Electron-Selective Contact for InP


- Consistent sheet resistances of ~67 Ω/sq for ITO
 ZnO was too resistive to measure
- Maintains smooth surface morphologies, RMS roughness of 0.4 nm
- RF sputtering at low temperatures minimizes interfacial damage with uniform nanocrystalline ZnO coverage¹¹

Significant Potential for Advancement



Interfacial Treatment – H₂ Plasma

Hydrogenation has been used to passivate shallow Zn acceptors and form a charge-depleted layer in the bulk¹²

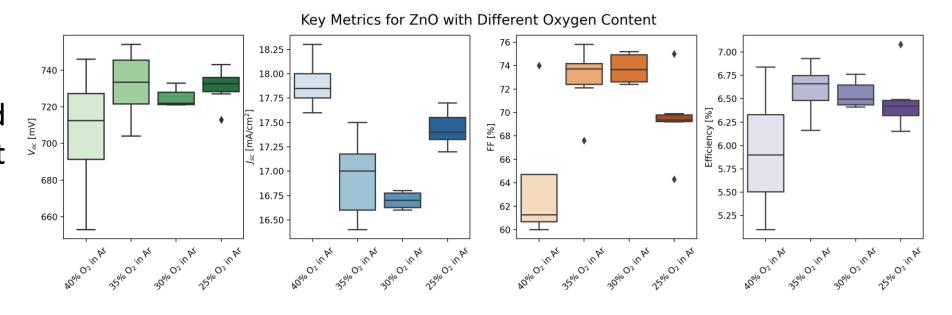
 Challenges: Damaging InP surface (due to In-droplet formation) and difficult reproducibility¹²

Introducing Ar to stabilize H_2 plasma, mitigating surface roughening and lowered J_{02} by an order of magnitude

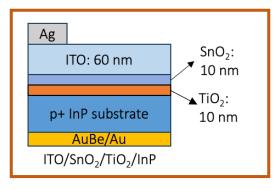
 J_{sc} : 27.6 mA/cm²

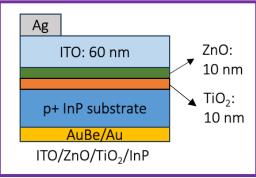
V_{oc}: 702 mV

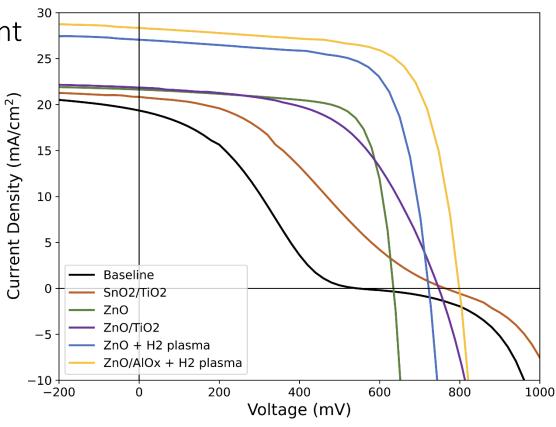
FF: 76.1%

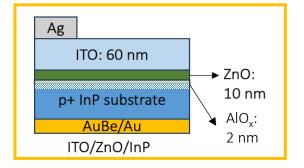

η (AM0): 10.79%

Oxygen Vacancy and Metal Doping


- Optimization of oxygen vacancies presents a trade-off between n-type conductivity, charge carrier transport, and increased visible light absorption
- o Confirmed bandgap narrowing as increased oxygen vacancies using UPS




Multilayer Oxide Systems


Preliminary demonstration of cascading band alignment for increased V_{oc}

Attempting to decouple passivation and carrier extraction + H₂ plasma

 J_{sc} : 28.8 mA/cm²

V_{oc}: 809 mV

FF: 76.1%

η (AM0): 12.91%

Future Work

- Optimization of electron-selective contact
 - Going to thinner ESC
 - Optimizing oxygen vacancy doping
- Improved passivation of space charge region either through interfacial treatment or multilayer system
- Radiation testing for electronic stability of non-epitaxial device
- o Immediate pathway to 15% AMO efficiency:
 - Reduced front contact coverage
 - Addition of lower index ARC

Application to Next-Generation Approaches

Radiation Tolerant Nanowire Solar Cells Thinne 1. 2.

Axial Junction

Thinner Substrates/Spalled InP

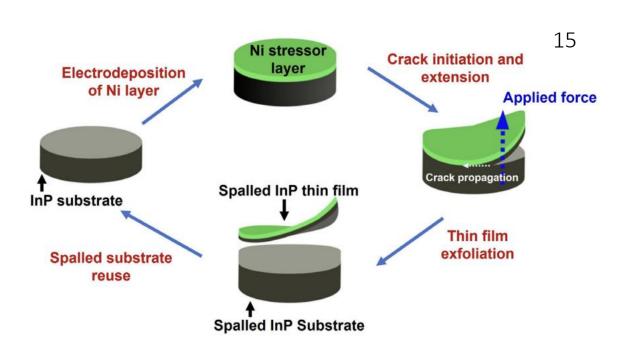
Fundamental Challenges

- . Reduced dimensionality results in limited light absorption
- High surface-to-volume ratio results in higher rates of non-radiative recombination (defects)

Epitaxial dopant incorporation to form radial junctions is quite complicated and variable

- Effectively decoupling light absorption and charge carrier extraction vectors
- Demonstrated intrinsic radiation tolerance due to reduced dimensionality and diffusion lengths¹³

Non-epitaxial carrier-selective contacts enable radial junction nanowires without dopant incorporation


Substrate Junction

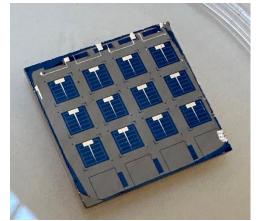
Radial Junction

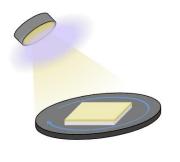
Application to Next-Generation Approaches

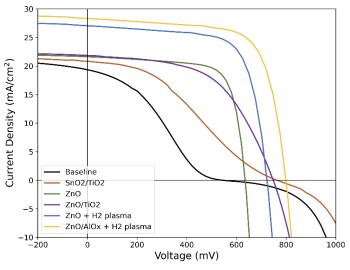
Radiation Tolerant Nanowire Solar Cells

Thinner Substrates/Spalled InP

Integrating transition metal oxide-based carrierselective contacts with spalled InP spalled thin films


- Reduced material cost
- Improved radiation tolerance from thinner substrates


Preliminary results, using TiO_2 ALD, demonstrate 8.9% efficiency (under AM1.5) on 15 μ m spalled InP thin film¹⁴


Conclusions

- 1. Present **7.27%** efficient (under AMO) fully sputtered InP solar cell using ZnO as an electron-selective contact
- Demonstrate significant potential in costefficiency using less complex and industry scalable techniques
- Highlight large parameter space and multiple pathways to enhanced device performance, with preliminary results achieving an efficiency of 12.91%

Acknowledgements

Jiayi Li Stefan Diesing Luksa Kujovic Adam Law

John M. Walls Hannah Joyce Louise Hirst

Get in touch! vsac2@cam.ac.uk

Established by the European Commission

InP as a Scalable Solution

- Indium processed as zinc concentrate byproduct, diffused in occurrence.
- Potential for distributed refining but low market demand currently.
 - Gallium for comparison: significant export controls from China, which accounts for 99% of worldwide primary low-purity gallium production
- Lower toxicity and import regulation

d Refinery Production and Capacity:	Indium
id Rennery Production and Capacity.	

	Refinery production 2023 2024e		Refinery capacity 2024 ^e
United States			
Belgium	19	10	50
Canada	40	35	70
China	690	760	1,100
France	21	21	70
Japan	65	60	70
Korea, Republic of	180	180	310
Peru	_	_	50
Russia	5	10	15
Uzbekistan World total (rounded)	1 1,020	1,080	1 1,800

<u>Gallium</u>

World Low-Purity Production and Production Capacity:

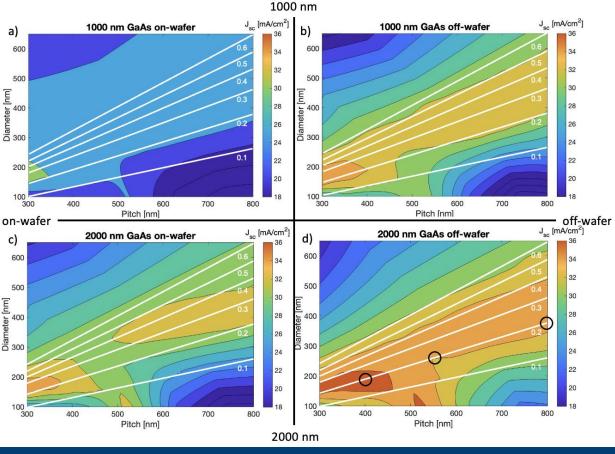
	Primary production 2023 2024e		Production capacity 2024	
United States			<u>2024</u>	
China	⁴ 621,000	4750,000	1,000,000	
Japan ^e	3,000	3,000	10,000	
Korea, Republic ofe	3,000	3,000	16,000	
Russiae	6,000	6,000	10,000	
Other countries ⁵			<u>e88,000</u>	
World total (rounded)	633,000	760,000	e1,100,000	

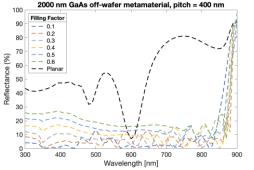
Designing Non-Epitaxial Carrier-Selective Contacts

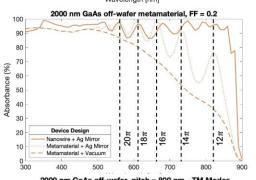
<u>Literature</u>

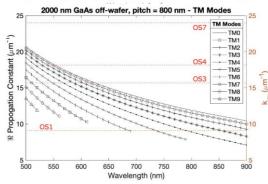
Oxides	Device Type	J _{sc} [mA/cm²]	V _{oc} [mV]	FF [%]	Efficiency [%]
¹TiO ₂ /InP	Planar	30.5	785	80.5	19.2
*2Ta ₂ O ₅ /InP	Planar	30.1	822	77	19.1
*3ZnO/InP	Planar	29.4	819	75.23	18.1
*4ZnO/GaAs	Planar	26.2	890	79.2	18.5
*5Ferri-hydrite/InP	Planar	28.6	761	76.2	16.6
⁶ ZnO/InP	Nanowire	31.3	736	74.6	17.1

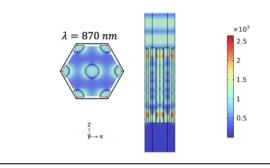
^[5] Gupta et al., ACS Appl. Mat. & Inter. 15(38), 44912-44920 (2023).


Loughborough Oxide Thicknesses – Ellipsometry + AFM


Oxide	Nominal Thickness (nm)	Fitted Thickness (nm)	Oxide Regrowth	Roughness (nm)	RMSE
ITO	60	66	Yes – 7.3nm	2.6	10.7
ITO	300				
ZnO	10	7.8	Hard to Distinguish	1.2	8.3


Surface	Substrate Temp. (°C)	O ₂ Content (% in Ar)	Nominal Thickness (nm)	RMS Roughness
Bare InP	-	-	-	1.03
ZnO	100	1	10	0.41
ITO	300	0.56	70	2.37


Field Enhancement through Engineered Light-Trapping



Deconvolution of light absorption by understanding individual mechanisms:

- Reduced reflection at front surface
- 2. Fabry-Perot modes due to constructive interference of specular reflected waves
- 3. Identify individual waveguide modes from scattering

d = 188nm, pitch = 400nm – HE_{11} mode

