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More Than 80 Years of Research and Development for the Nation
Transformative Innovation and Trusted Technical Leadership
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268,000 sq. ft. R&D facility 

90,000 sq. ft. of lab spaces
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Applied Battery R&D Facilities and Capabilities
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Custom Form Factors

Chemistry and Manufacturing

Advanced Testing Capabilities
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Battery Research Overview

VALIDATION & 

DERISKING

INNOVATION AREAS

INNOVATION THRUSTS
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Powering the Future of DoD

Extreme Environments

Multiple Battery Types Energy Logistics

Expeditionary Power

Dual Use

Increased Safety



Battery Research at JHU/APL
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Wearable Batteries 3D Printed Batteries Textile/Fiber Power Sources

Novel Battery Electrodes



Transforming Battery Safety and Manufacturing 
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Lithium Sulfur in the Energy Storage Ecosystem

Extreme Environments

Energy Logistics

INNOVATION THRUSTS

INNOVATION AREAS

Increased Safety

Dual Use



Challenge, Vision, and Proposed Solution
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100 Wh/kg @ 40% DOD

SOA & Challenge

LIBs are stable for 1000s of 

cycles, but severely limited 
energy density at low DOD

48 Wh/kg @ 20% DOD

Vision

Benefits: Lithium sulfur affords high 

energy density at low DOD

Target: Lithium Sulfur Batteries 

Optimized for Performance at Full 
and Low DOD

Challenge: Polysulfide diffusion and 

volume expansion

Poor Rate 

Capabilities

Anode fouling

Poor cycle life

Capacity fade

Proposed Solution

Chemistry and Processing 

Improvements to Enable LiS for 
Space

Additives 
Separators 

Hybrid Cathodes 

Low density CCs

Practical Conditions 

High cycle life (>100 cycles at full 
DOD and > 1000 at low DOD)

Supply Chain Secure

Limited volume expansion

Validate in 100 – 1000 mAh cells 
under reasonable conditions

High energy density at low DOD

3 Ah

~240 Wh/kg at 100% DOD



Lithium Sulfur Background: Literature & Leading 
Solutions
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Five 5s: Key parameters 

required to achieve LiS 

cells in excess of 500 

Wh/kg

Sulfurized Composites & Electrolyte Additives

Conductive sulfur polymers to limit volume expansion 

and resistance, fluorinated electrolyte additives to 
mitigate polysulfide shuttling

Scalable Solutions and Demonstrations

Pilot scale coatings and demonstrations, E/S 

loadings ~ 5-10 uL/mg S, S loadings ~ 3-5 mAh/cm2

Battery Materials Research 

(BMR) program: Lithium 
Sulfur

Outlook
Sulfurized composites appear 

to be most promising near-term 
solution

Challenges

Poor cycle life <200 cycles

Poor specific energy  < 200 
Wh/kg in full cell

Meng – U. Chi.

Emerging Areas of Research from Academia in the LiS Space

Xu, T. et al. 2024 DOE VTO AMR.

Xu, T. et al. 2024 SPW.

Wang, D. et al. 2024 VTO AMR.

Meng, S. et al. Angew. Chem. Int. Ed. 

VTO BMR and Battery 500

Manthiram, EES, 2020.
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JHU/APL’s Innovations for the Li-S Ecosystem

NEW CAM MATERIALS and 

SEPARATORS

OPTIMIZING PERFORMANCE OF 

HIGH SULFUR CONTENT CATHODES

SYNTHESIZING AND FORMULATING 

PERFORMANCE ENHANCING ADDITIVES

0 25 50 75 100 125 150 175 200

0

200

400

600

800

1000

1200

Cycle

S
p

e
c
if

ic
 C

a
p

a
c

it
y

 (
m

A
h

/g
)

 S-IV 

 S-I-Se-IV

 S-I-IV

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600  5 min

 15 min

 30 min

S
p

e
c

if
ic

 C
a

p
a

c
it

y
 (

m
A

h
/g

)

Cycle (#)
0 1000 2000 3000

1.8

2.0

2.2

2.4

 Cycle 1

 Cycle 2

 Cycle 3

V
o

lt
a

g
e

 (
V

)

Energy (mWh)

Stable cycling in 

large cell format 

with Vnom ~ 2.12 V

*Experimental 

data projected 
from 1 Ah 

pouch to 6.5 

Ah pouch

0 25 50 75 100 125
0

50

100

150

200

250

300

 APL (0.33 C - 6.5 Ah Cell), 4.5 PSI

E
n

e
rg

y
 D

e
n

s
it

y
 (

W
h

/k
g

)

Cycle (#)

Scalable Innovations 

Roll to roll coating10 Ah Prototype Cell

IN
N

O
V

A
TI

O
N

S
IM

PA
C

T



Expanding the range of IV materials
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Several early conditions exceeded 1000 mAh/g capacity on cycling at 

low loading, and approached ~ 1000 mAh/g over extended cycling at 

C/10

Initial work centered on multi-

functional crosslinkers based on 

previous studies on IV monomers
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IV Polymers can exhibit up to 1500 mAh/g theoretical capacity compared to 650-940 mAh/g for S-PAN
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Amine Additives for Improved Sulfur Utilization 
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Novel Amine based Polymer Additives Enabled Tunable Sulfur Binding and Activation

Under initial screening, amine additives are observed to enable near theoretical capacity with > 1600 mAh/g. 

Activation is due to tunable sulfur-nitrogen binding interaction.

APL-1

APL-2

APL-3

Sulfur



Thickness increases with Loading

Increasing Active Loading of Amine Additive Formulations
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Leading formulation was evaluated for performance at increasing loadings, revealing excellent 

performance at moderate and high loadings at low rate (0.1C)
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Approaching kWh energy 

throughput – a first from a 

simple binder additive

Developed chemistries enable 250-300 Wh/kg currently, with projections based on current data suggesting optimized cells will enable 300-

400 Wh/kg performance in moderate size cells (6.5 Ah), and 400-540 Wh/kg in pack-ready large cell formats (61 Ah)

Optimized Full Cells with Realized Energy Density > 250 Wh/kg
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Conclusion and Future Work
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• Lithium sulfur is the only fully domestic secondary cell 
chemistry that can exceed 350 Wh/kg

• The lithium sulfur ecosystem is growing, but to date no 
commercially available lithium sulfur cells 

• JHU/APL’s innovations provide a low cost, scalable 
and domestic supply chain secure alternative/risk 
mitigation for leading startup-phase commercial 
entities

• Low pressure tolerant chemistries will be tested in 
cylindrical cell formats going forward

• Partnership opportunities to combine additives with 
commercial sulfurized cathode formulations with 
improved sulfur distribution, and inverse vulcanized 
cathodes for novel carbon/binder systems

Projected Peak Energy Density as a Function of 

Sulfur Loading and Utilization

Nicholas.Pavlopoulos@jhuapl.edu
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