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Applied Battery R&D Facilities and Capabilities

Chemistry and Manufacturing




Battery Research Overview
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Powering the Future of DoD

Expeditionary Power Extreme Environments Increased Safety
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Battery Research at JHU/APL

Wearable Batteries
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Transforming Battery Safety and Manufacturing
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Lithium Sulfur in the Energy Storage Ecosystem
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Challenge, Vision, and Proposed Solution

SOA & Challenge

Lithium lon

NCR18650B

Dimensions

Panasonic

Features & Benefits

100 Wh/kg @ 40% DOD
48 Whikg @ 20% DOD

LIBs are stable for 1000s of

cycles, but severely limited
energy density at low DOD

Vision

Benefits: Lithium sulfur affords high
energy density at low DOD

Charge

Li,S,
Discharge

Potential (V vs. LilLi")

400 800 1200 1600

Specific capacity (mAh/g)

Target: Lithium Sulfur Batteries
Optimized for Performance at Full
and Low DOD

Challenge: Polysulfide diffusion and
volume expansion

Current Collecto

Lithium Poor Rate
Separator l Capabilities
Anode fouling

Liquid Electrolyt

e e Poor cycle life

Sulfur-cathode
Capacity fade

Current Collector

Proposed Solution

Chemistry and Processing
Improvements to Enable LiS for
Space

________ t

Additives
Separators
Hybrid Cathodes
Low density CCs

LIPs Confined

Practical Conditions

High cycle life (>100 cycles at full
DOD and > 1000 at low DOD)

Limited volume expansion

Supply Chain Secure

High energy density at low DOD

Validate in 100 — 1000 mAh cells
under reasonable conditions
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Lithium Sulfur Background: Literature & Leading

Solutions

Battery Materials Research
(BMR) program: Lithium
Sulfur

Office of
ENERGY EFFICIENCY &
RENEWABLE ENERGY

Tech nology Status

Sulfurized Li,S
Polymer
Liquid Solld Liquid Liquid
Electrolyte Electrolyte | Electrolyte Electrolyte

Lithium Protection Required | [ [ ]
Stack PressureNeeded | | | | |
VolmeChange | | | ||

l:lGood l:lFair l:lUnsatisfactory

Long-term Goal: 500V
Near-term Goal: 275-300

5, 1,000 cycles
g, 1,000 cycles (Low-cost alternative to conventional lithium-ion batteries)

Outlook

Sulfurized composites appear
to be most promising near-term
solution

Challenges

Five 5s: Key parameters
required to achieve LiS
cells in excess of 500
Wh/kg

Manthiram, EES, 2020.

Poor cycle life <200 cycles
Poor specific energy < 200
Wh/kg in full cell

Emerging Areas of Research from Academia in the LiS Space

Sulfurized Compos:tes & Electrolyte Additives
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Wang, D. et al. 2024 VTO AMR.
Conductive sulfur polymers to limit volume expansion
and resistance, fluorinated electrolyte additives to
mitigate polysulfide shuttling

Scalable Solutions and Demonstrations

Navitas C/ceramic Suuur
host powder
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ma® agglomerates

+ Ceramic sulfur host with strong
polysulfide absorption

Final baseline
S cathode
powder

Synthesis of Navitas sulfur

composite can be easily scaled up.
« Synthesized sulfur composites

contain ~76wt.% sulfur (TGA result).

1. SEM (EDS) showed uniform sulfur
distribution.

« Catalyze polysulfide conversion

]
S
8

Cycling @ C/10

Cycling @ C/10
ycling @ C/ 1626V

1.6-26V

3
3
38

™
8

IS
8
3

Specific discharge capacity (mAh/g)
n P
8 8

o

Cycle number

Xu, T. etal. 2024 DOE VTO AMR.
Pilot scale coatings and demonstrations, E/S
loadings ~ 5-10 uL/mg S, S loadings ~ 3-5 mAh/cm?

Cycle number
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JHU/APL’s Innovations for the Li-S Ecosystem

INNOVATIONS
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NEW CAM MATERIALS and

HIGH SULFUR CONTENT CATHODES PERFORMANCE ENHANCING ADDITIVES SEPARATORS
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Expanding the range of IV materials
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Initial work centered on multi- Several early conditions exceeded 1000 mAh/g capacity on cycling at
functional crosslinkers based on low loading, and approached ~ 1000 mAh/g over extended cycling at
previous studies on IV monomers Cc/10
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Amine Additives for Improved Sulfur Utilization S

Sulfur
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Novel Amine based Polymer Additives Enabled Tunable Sulfur Binding and Activation
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Under initial screening, amine additives are observed to enable near theoretical capacity with > 1600 mAh/g.
Activation is due to tunable sulfur-nitrogen binding interaction.



Increasing Active Loading of Amine Additive Formulations
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Increase areal
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Leading formulation was evaluated for performance at increasing loadings, revealing excellent
performance at moderate and high loadings at low rate (0.1C)
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Optimized Full Cells with Realized Energy DenS|ty > 250 Wh/kg
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Developed chemistries enable 250-300 Wh/kg currently, with projections based on current data suggesting optimized cells will enable 300-
400 Wh/kg performance in moderate size cells (6.5 Ah), and 400-540 Wh/kg in pack-ready large cell formats (61 Ah)




Projected Peak Energy Density as a Function of

Conclusion and Future Work Sulfur Loading and Utilization
Lithium sulfur is the only fully domestic secondary cell | | BN
chemistry that can exceed 350 Wh/kg 600 mAN/g
o 800 mAN/g
—&— 1000 mAh/
The lithium sulfur ecosystem is growing, but to date no 1200 mAN

. . . . —a— 1400 mAh/
commercially available lithium sulfur cells e

JHU/APL’'s innovations provide a low cost, scalable
and domestic supply chain secure alternative/risk
mitigation for leading startup-phase commercial
entities
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Low pressure tolerant chemistries will be tested in
cylindrical cell formats going forward

Partnership opportunities to combine additives with
commercial sulfurized cathode formulations with
improved sulfur distribution, and inverse vulcanized
cathodes for novel carbon/binder systems

Nicholas.Pavlopoulos@jhuapl.edu 18



JOHNS HOPKINS

APPLIED PHYSICS LABORATORY



	Slide 1: Lithium Sulfur Batteries for Aerospace and Defense at JHU/APL
	Slide 2
	Slide 3
	Slide 4: Research Facilities
	Slide 5: Applied Battery R&D Facilities and Capabilities
	Slide 6
	Slide 7
	Slide 8: Battery Research at JHU/APL
	Slide 9
	Slide 10: Lithium Sulfur in the Energy Storage Ecosystem
	Slide 11: Challenge, Vision, and Proposed Solution
	Slide 12: Lithium Sulfur Background: Literature & Leading Solutions
	Slide 13
	Slide 14: Expanding the range of IV materials
	Slide 15: Amine Additives for Improved Sulfur Utilization 
	Slide 16: Increasing Active Loading of Amine Additive Formulations
	Slide 17: Optimized Full Cells with Realized Energy Density > 250 Wh/kg
	Slide 18: Conclusion and Future Work
	Slide 19

