

Scott R. Messenger, PhD
Radiation Survivability Physicist

May 1, 2025

Outline

- Motivation/Purpose
- 60Co Gamma Ray Interactions in Matter
- Ionizing vs. Nonionizing Energy Deposition
 - Dose equilibrium conditions
- Ground Testing Impacts and Recommendations
- Summary

Space PV Standards

- AIAA S-111A (currently in revision)
 - Suggests 3 electron energies (0.6, 1.0, 5.0 MeV) and corresponding fluences to produce degradation curves to allow for equivalent fluence (JPL) or DDD analyses

Table 2 — Electron energies and fluences*

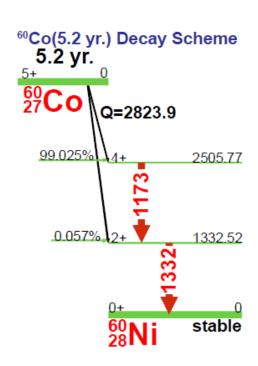
Energies (MeV)	Fluences (number of electrons per square centimeter)					
.6	2x10 ¹³	2x10 ¹⁴	1x10 ¹⁵	2x10 ¹⁵	4x10 ¹⁵	
1.0	3x10 ¹³	1x10 ¹⁴	5x10 ¹⁴	1x10 ¹⁵	3x10 ¹⁵	1x10 ¹⁶
5.0	4x10 ¹²	1x10 ¹³	4x10 ¹³	1x10 ¹⁴	4x10 ¹⁴	

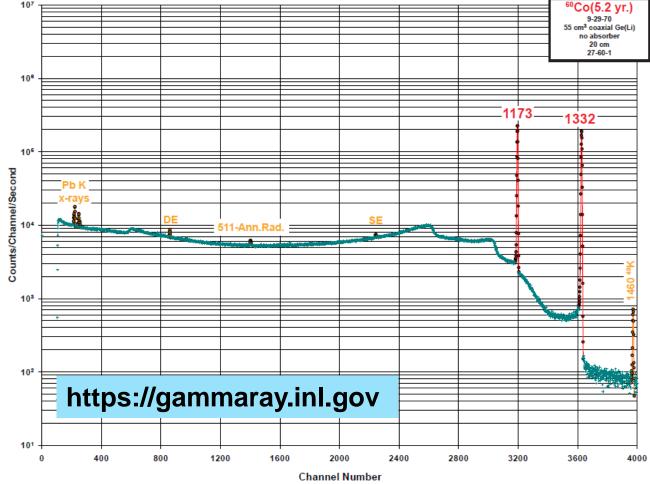
^{*}These energies and fluences are recommended except for the fluence of $\ge 1 \times 10^{16}$ 1 MeV electrons, which is required.

- ECSS-E-ST-209-80C (2023)
 - Only requires 1 MeV electrons

Can we use ⁶⁰Co gamma rays as a 1 MeV electron surrogate if we understand the physics enough?

Outline

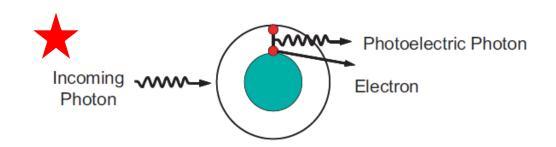

- Motivation/Purpose
- 60 Co Gamma Ray Interactions in Matter
- Ionizing vs. Nonionizing Energy Deposition
 - Dose equilibrium conditions
- Ground Testing Impacts and Recommendations
- Summary



⁶⁰Co Gamma Ray Analyses

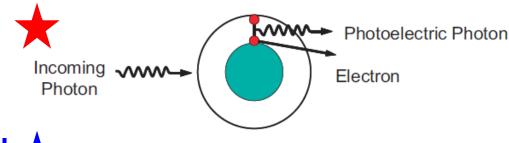
⁶⁰Co Gamma Spectrum

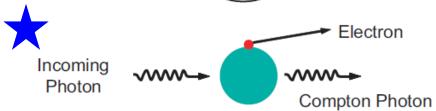
(2 Gamma Rays: 1.173 MeV & 1.332 MeV) - Commonly represented as single gamma @ 1.25 MeV



• Gamma rays have *no mass and no charge*, however they interact with matter to produce secondary *electrons* which can transport and induce TID & DDD in devices

- Gamma rays have *no mass and no charge*, however they interact with matter to produce secondary *electrons* which can transport and induce TID & DDD in devices
 - -Photoelectric Effect
 - Emission of electrons from EM radiation
 - Dominates at low energies (~Z⁴/E³ dependence)





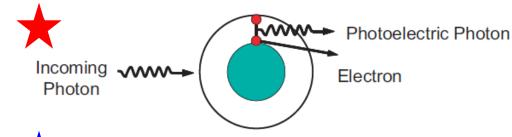
• Gamma rays have *no mass and no charge*, however they interact with matter to produce secondary *electrons* which can transport and induce TID & DDD in devices

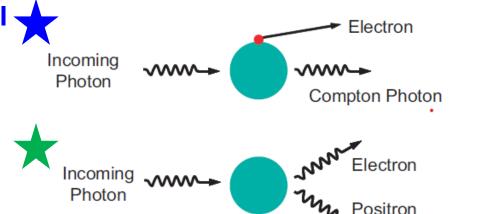
-Photoelectric Effect

- Emission of electrons from EM radiation
- Dominates at low energies (~Z⁴/E³ dependence)
- -Compton Effect
 - QM elastic scattering of loosely-bound, outer-shell electrons from EM radiation
 - Dominates intermediate energies (~Z dependence)

• Gamma rays have *no mass and no charge*, however they interact with matter to produce secondary *electrons* which can transport and induce TID & DDD in devices

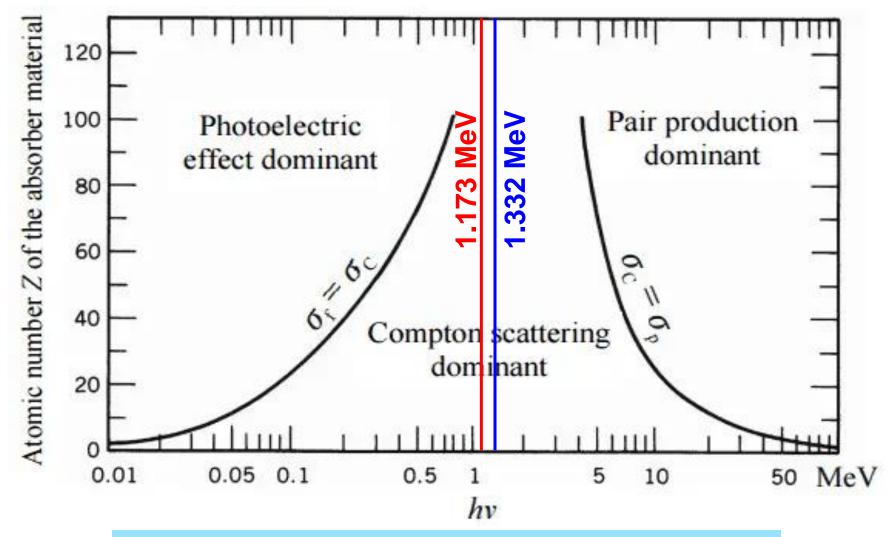
-Photoelectric Effect


- Emission of electrons from EM radiation
- Dominates at low energies (~Z⁴/E³ dependence)

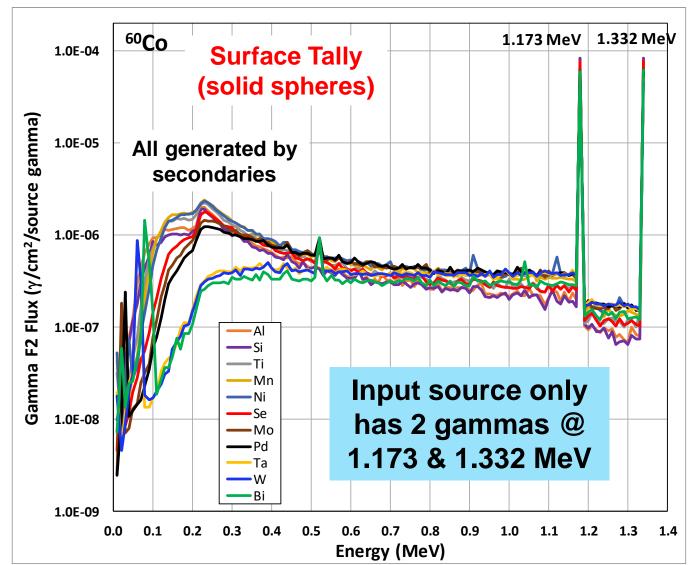

-Compton Effect

- QM elastic scattering of loosely-bound, outer-shell electrons from EM radiation
- Dominates intermediate energies (~Z dependence)

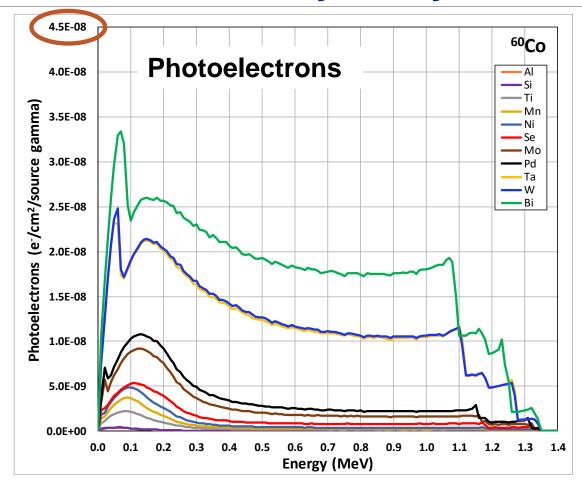
-Pair Production


- Electron-positron production
- Dominates @ high enery (~Z² dependence)
- Need minimum energy of 1.02 MeV to cause interaction

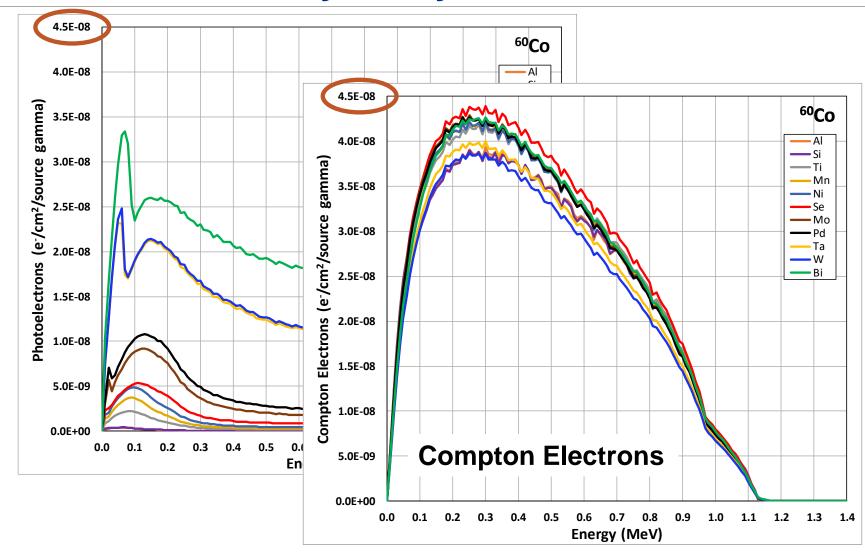
⁶⁰Co gamma rays are heavily used (high and low dose rate) in radiation effects TID testing


Photon cross sections available via NIST XCOM

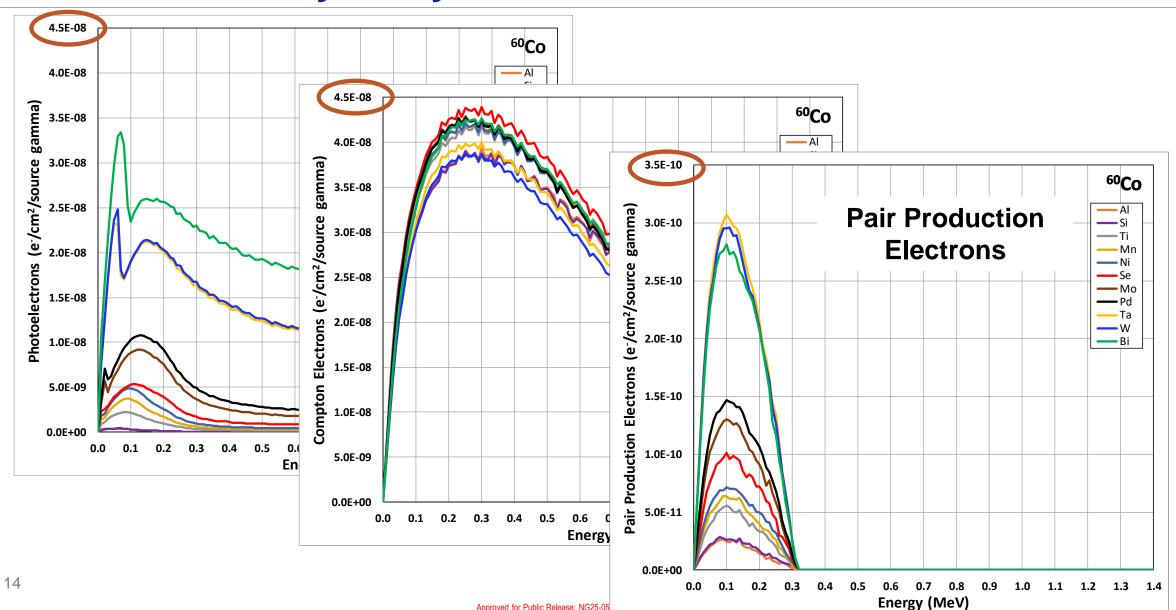
⁶⁰Co Gamma Ray Analyses – MCNP Simulations


MCNP6 Source Definition

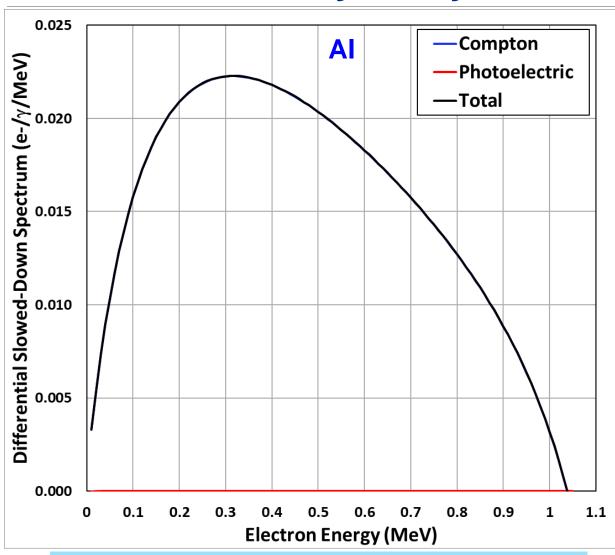
```
c Co60 surface source
c
sdef par=p x=d1 y=d2 z=0 vec=0 0 1 erg=d4 sur=1.6
si1 -50 50
sp1 0 1
si2 -50 50
sp2 0 1
si4 L 1.173 1.332
sp4 D 1 1
```

⁶⁰Co Gamma Ray Analyses – MCNP Electron Generation

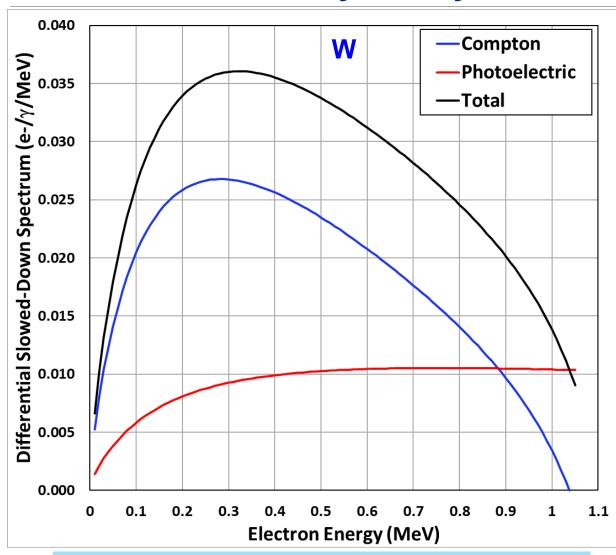


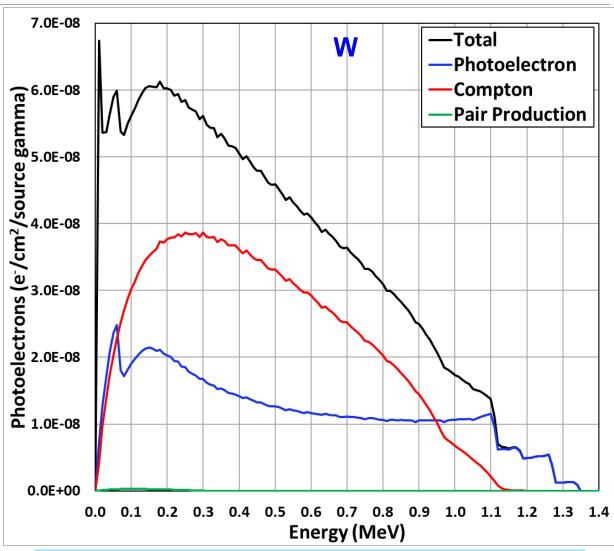
⁶⁰Co Gamma Ray Analyses – MCNP Electron Generation




⁶⁰Co Gamma Ray Analyses – MCNP Electron Generation

⁶⁰Co Gamma Ray Analyses – Electron Generation (AI)




Analytical formulation (SRM 1995 PhD Diss.)

Monte Carlo Transport Simulation (MCNP6)

⁶⁰Co Gamma Ray Analyses – Electron Generation (W)

Analytical formulation (SRM 1995 PhD Diss.)

Monte Carlo Transport Simulation (MCNP6)

Outline

- Motivation/Purpose
- 60Co Gamma Ray Interactions in Matter
- Ionizing vs. Nonionizing Energy Deposition from 60 Co Gamma Rays
 - Dose equilibrium conditions
- Ground Testing Impacts and Recommendations
- Summary

Ionizing vs. Nonionizing Dose for 60Co Gammas in Al

*Ionizing Dose Calculation

$$TID = \int \frac{d\phi(E)}{dE} \, \frac{dE}{dx} \, dE$$

*Displacement Damage Dose Calculation

$$DDD(E_{ref}) = \frac{1}{S(E_{ref})^{n-1}} \int \frac{d\phi(E)}{dE} S(E)^n dE$$

*1 MeV electron fluence equivalent

$$\varphi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\varphi(E)}{dE} S(E)^n dE$$

*n is a function of parameter & material

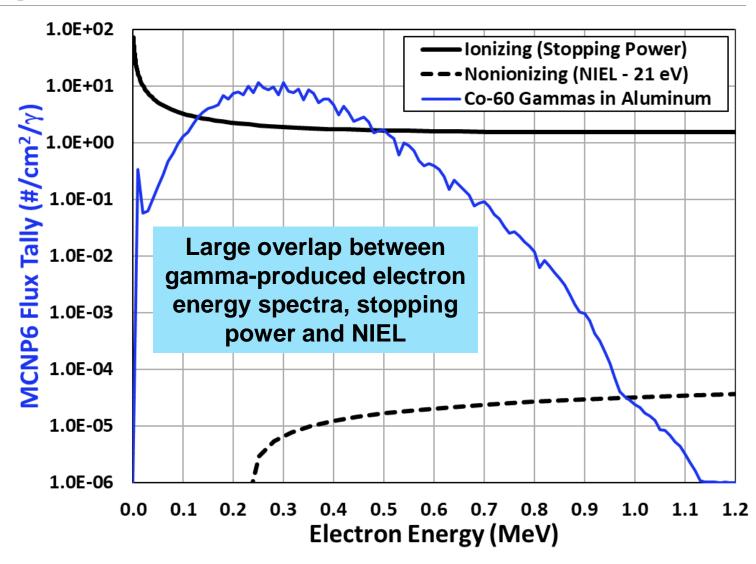
*Protons, neutrons & heavy ions: n=1

*Electrons: variable, empirical

Ionizing vs. Nonionizing Dose for 60Co Gammas in Al

*Ionizing Dose Calculation

$$TID = \int \frac{d\phi(E)}{dE} \frac{dE}{dx} dE$$


*Displacement Damage Dose Calculation

$$DDD(E_{ref}) = \frac{1}{S(E_{ref})^{n-1}} \int \frac{d\phi(E)}{dE} S(E)^n dE$$

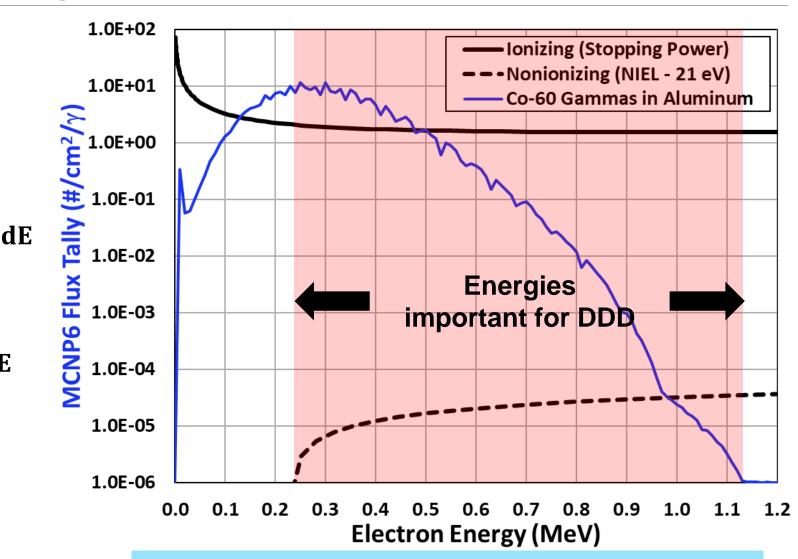
*1 MeV electron fluence equivalent

$$\varphi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\varphi(E)}{dE} S(E)^n dE$$

*n is a function of parameter & material *Protons, neutrons & heavy ions: n=1 *Electrons: variable, empirical

Ionizing vs. Nonionizing Dose for 60Co Gammas in Al

*Ionizing Dose Calculation


$$TID = \int \frac{d\phi(E)}{dE} \frac{dE}{dx} dE$$

*Displacement Damage Dose Calculation

$$DDD(E_{ref}) = \frac{1}{S(E_{ref})^{n-1}} \int \frac{d\phi(E)}{dE} S(E)^n dE$$

*1 MeV electron fluence equivalent

$$\varphi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\varphi(E)}{dE} S(E)^n dE$$

*Dosimetry concerns (2024 SPW talk & NSREC paper)

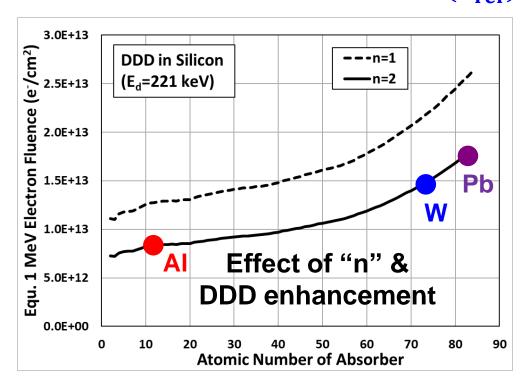
Gamma Ray-Induced DDD & 1 MeV Electron Fluence

- Analytical (1993: G.P. Summers et al. IEEE Trans. Nucl. Sci. 40, 1372 (1993))
 - Assumes particle equilibrium in spherical geometries (optimal electron generation)
 - Calculate equivalent 1 MeV electron fluence from photoelectrons and Compton electrons

$$\varphi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\varphi(E)}{dE} S(E)^n dE$$

– Convert 1 Mrad to equivalent 1 MeV electron fluence (1 Mrad = 1.9x10¹⁵ 60Co photons/cm²)

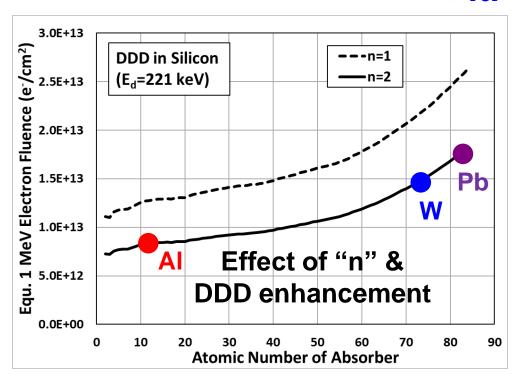
TABLE 1 Co ⁶⁰ GAMMA-INDUCED DISPLACEMENT DAMAGE ¹							
Average γ-induced Electron NIEL (eV.cm²/g)		1MeV Electron NIEL (eV.cm ² /g)	Equivalent 1 MeV Electron Fluence for 1 Mrad(Si) (cm ⁻²)				
n-Si p-Si	13.08	31.42 31.42	1.25x10 ¹³ 8.04x10 ¹²				
GaAs	9.25	26.5	1.08x10 ¹³				
InP	14.19	33.5	1.30x10 ¹³				
1 Threshold energies: Si = 21eV, Ga and As = 10eV, In = 6.7eV and P = 8.7eV.							

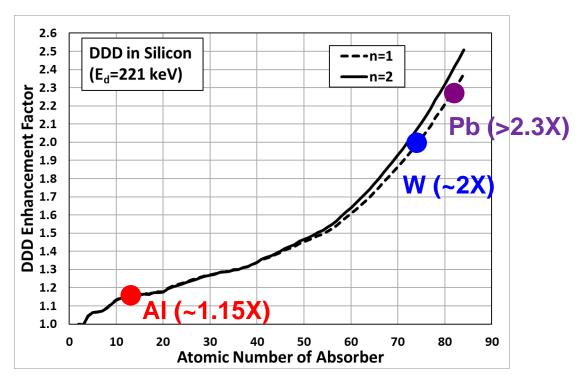

*from "Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations", G.P. Summers, et al., IEEE Trans. Nucl. Sci. 40, 1372 (1993).

Gamma Ray-Induced DDD & 1 MeV Electron Fluence

 Analytical (1995: S.R. Messenger, "Electron- and Gamma-Induced Displacement Damage Effects..." PhD Dissertation UMBC (1995)

$$\phi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\phi(E)}{dE} S(E)^n dE$$

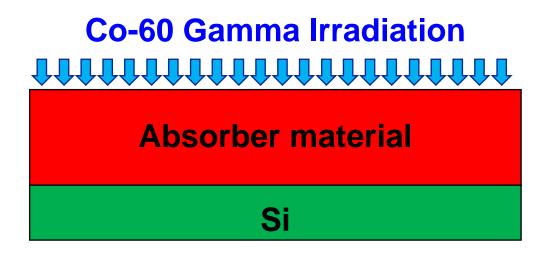

Particle equilibrium assumed – 1st notice of DDD enhancement



Gamma Ray-Induced DDD & 1 MeV Electron Fluence

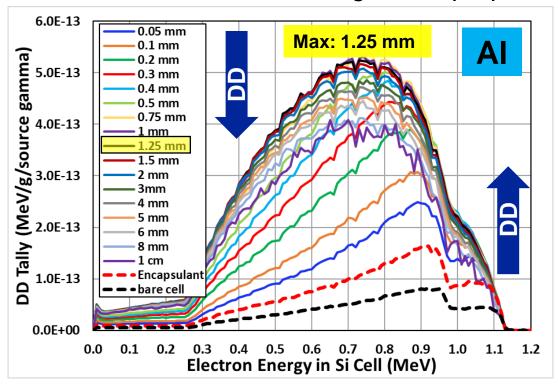
 Analytical (1995: S.R. Messenger, "Electron- and Gamma-Induced Displacement Damage Effects..." PhD Dissertation UMBC (1995)

$$\phi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\phi(E)}{dE} S(E)^n dE$$



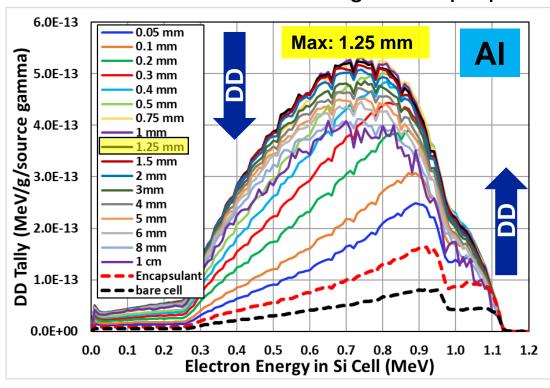
Particle equilibrium assumed – 1st notice of DDD enhancement

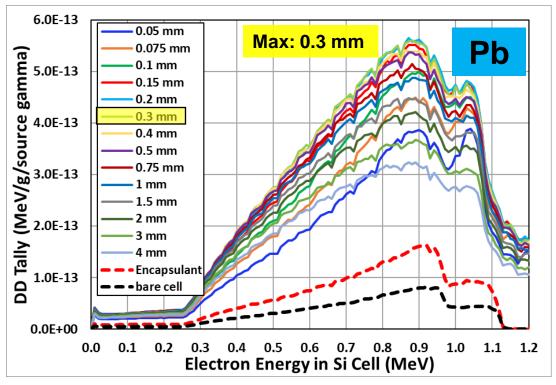
- Monte Carlo Transport Simulations (2012-2018 & current references)
 - Particle equilibrium condition explored
 - Balance between electron generation and attenuation



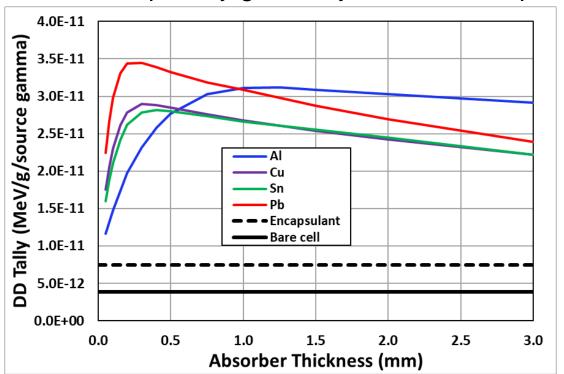
- *For constant active region (Si) thickness
- Case 1: Absorber too thin
 - Incomplete electron generation
- Case 2: Absorber too thick
 - Complete electron generation, but self-attenuation
 - Possibility of dose enhancement (TID & DDD)

- Monte Carlo Transport Simulations (2012-2018 & current references)
 - Determines gamma interactions in materials and produces relevant energy spectra
 - TID and DDD tallies in sensitive volumes
 - 1 MeV electron simulations give the proper normalizations




Particle equilibrium effects are noted

- Monte Carlo Transport Simulations (2012-2018 & current references)
 - Determines gamma interactions in materials and produces relevant energy spectra
 - TID and DDD tallies in sensitive volumes
 - 1 MeV electron simulations give the proper normalizations



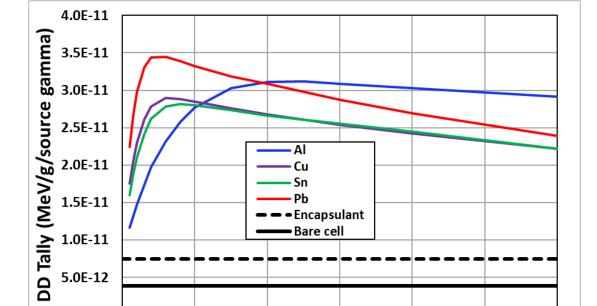
Particle equilibrium effects are noted

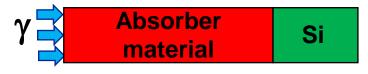
Monte Carlo Transport Simulations (2012-2018 & current references)

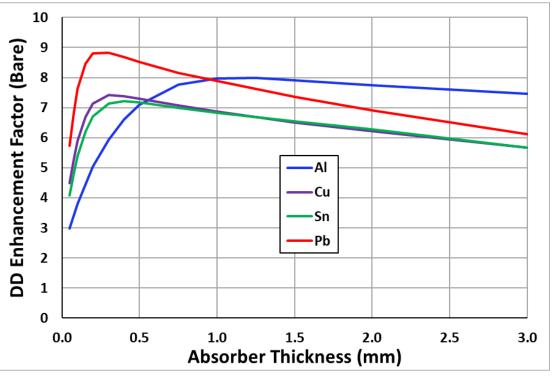
- Determines gamma interactions in materials and produces relevant energy spectra
- TID and DDD tallies in sensitive volumes
- Easier to quantify geometry effects and equilibrium

Different particle equilibrium effects are noted with absorber

2.5


Monte Carlo Transport Simulations (2012-2018 & current references)


- Determines gamma interactions in materials and produces relevant energy spectra
- TID and DDD tallies in sensitive volumes
- Easier to quantify geometry effects and equilibrium


1.5

Absorber Thickness (mm)

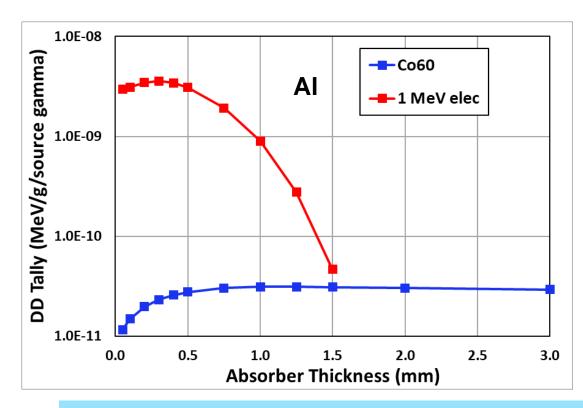
2.0

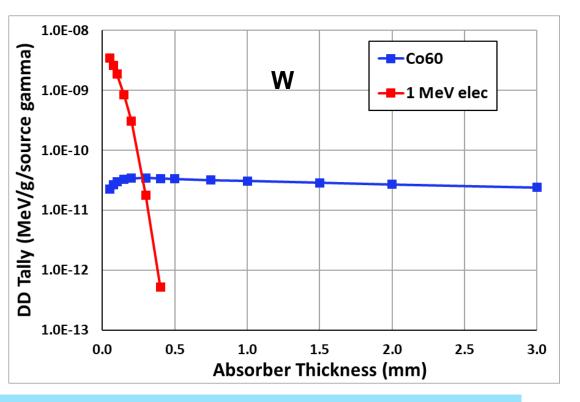
Different particle equilibrium effects are noted with absorber material

3.0

0.0E + 00

0.0


0.5



Particle Equilibrium – DDD Deposition - 1 MeV Electrons

- Monte Carlo Transport Simulations (2012-2018 & current references)
 - 1 MeV electron simulations to find proper ground test correlation
 - Nonlinear dependence found with different equilibrium condition

Different particle equilibrium effects are noted between ⁶⁰Co gammas and 1 MeV electrons

Outline

- Motivation/Purpose
- 60Co Gamma Ray Interactions in Matter
- Ionizing vs. Nonionizing Energy Deposition
 - Dose equilibrium conditions
- Ground Testing Impacts and Recommendations
- Summary

- 60Co gamma rays can be very convenient low cost, large area, high dose rate
 - Published, nominal 1 Mrad=10¹³ e⁻/cm² will require 1 Grad to get 10¹⁶ e⁻/cm²
 - Little solar cell degradation data exist comparing 1 MeV electrons and ⁶⁰Co gammas
 - 1995 PhD has data for n/p and p/n InP

- 60Co gamma rays can be very convenient low cost, large area, high dose rate
 - Published, nominal 1 Mrad=10¹³ e⁻/cm² will require 1 Grad to get 10¹⁶ e⁻/cm²
 - Little solar cell degradation data exist comparing 1 MeV electrons and 60Co gammas
 - 1995 PhD has data for n/p and p/n InP
- 60Co gamma ray-induced DDD "Dose Equilibrium" often ignored and very important
 - Facility/solar cell/array geometry
 - Effect of shielding (material & thickness) can be helpful through DDD enhancement
 - TID effects show similar trends and may be important for some technologies

- 60Co gamma rays can be very convenient low cost, large area, high dose rate
 - Published, nominal 1 Mrad=10¹³ e⁻/cm² will require 1 Grad to get 10¹⁶ e⁻/cm²
 - Little solar cell degradation data exist comparing 1 MeV electrons and 60Co gammas
 - 1995 PhD has data for n/p and p/n InP
- 60Co gamma ray-induced DDD "Dose Equilibrium" often ignored and very important
 - Facility/solar cell/array geometry
 - Effect of shielding (material & thickness) can be helpful through DDD enhancement
 - TID effects show similar trends and may be important for some technologies
- Dosimetry concerns
 - TID vs DDD (2024 SPW presentation)
 - TID dosimeters will overestimate the amount of electron flux for DDD-based irradiations

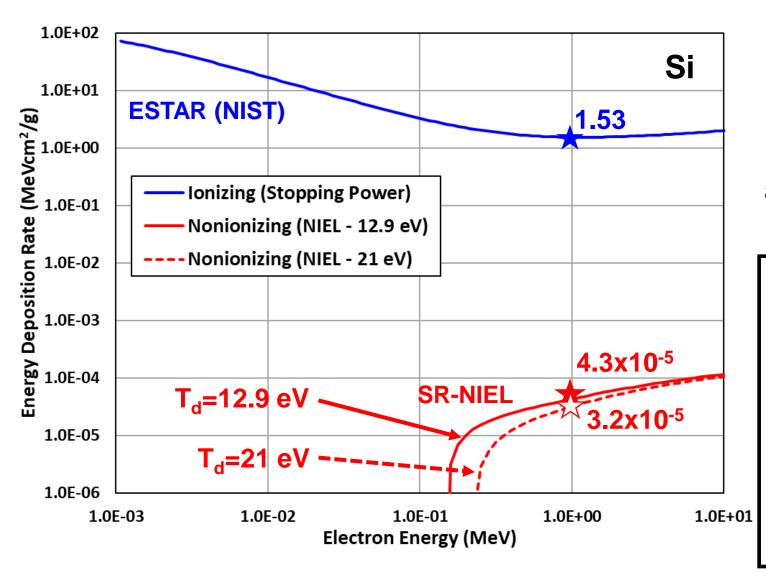
- 60Co gamma rays can be very convenient low cost, large area, high dose rate
 - Published, nominal 1 Mrad=10¹³ e⁻/cm² will require 1 Grad to get 10¹⁶ e⁻/cm²
 - Little solar cell degradation data exist comparing 1 MeV electrons and ⁶⁰Co gammas
 - 1995 PhD has data for n/p and p/n InP
- 60Co gamma ray-induced DDD "Dose Equilibrium" often ignored and very important
 - Facility/solar cell/array geometry
 - Effect of shielding (material & thickness) can be helpful through DDD enhancement
 - TID effects show similar trends and may be important for some technologies
- Dosimetry concerns
 - TID vs DDD (2024 SPW presentation)
 - TID dosimeters will overestimate the amount of electron flux for DDD-based irradiations
- Electron irradiations still necessary for full radiation qualification
 - Need 1 MeV (and another > 1 MeV OR 60Co) to determine "n" factor

Outline

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
- 60Co Gamma Ray Interactions in Matter
- Ionizing vs. Nonionizing Energy Deposition
 - Dose equilibrium conditions
- Ground Testing Impacts and Recommendations
- Summary

Summary

- Gamma rays interact in matter to produce secondary electron energy spectra which can transport into sensitive volumes to deposit both TID and DDD
- Absorber material and thickness are important quantities
 - Dose equilibrium
 - Dose enhancement possible
- Analytical analyses show many trends but necessarily assume dose equilibrium which is not the usual case in practice
- Monte Carlo transport simulations can be useful in identifying trends and help in test plan development
- 1 MeV electron irradiations are still required for damage correlations
- 60Co gamma rays can be a convenient electron source for *continued* work
- More data are needed… (wait for next year ☺)


A Few Relevant References...

- 1993: IEEE Trans. Nucl. Sci. 40, 1372 (1993)
- "Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations"
- 1994: IEEE Trans. Nucl. Sci. 41, 1945 (1994)
- "Co⁶⁰ Gamma Ray and Electron Displacement Damage Studies of Semiconductors"
- 1994: IEEE First World Conference on Photovoltaic Energy Conversion (WCPEC)
- "Co⁶⁰ Gamma Ray Irradiations of Solar Cells: A New Way to Predict Space Radiation Damage"
- 1995: UMBC Ph.D. Dissertation (SRM)
- "Electron- and Gamma-Induced Displacement Damage Effects in InP Semiconductor Devices"
- 2012: IEEE Trans. Nucl. Sci. 59, 3117 (2012)
- "Equivalent Displacement Damage Dose for On-Orbit Space Applications"
- 2017: IEEE Trans. Nucl. Sci. 64, 991 (2017)
- "Gamma and Electron NIEL Dependence of Irradiated GaAs"
- 2018: J. Appl. Phys. 123, 095703 (2018)
- "Gamma Non-Ionizing Energy Loss: Comparison with the Damage Factor in Silicon Devices"

NORTHROP GRUMMAN

Ionizing vs. Nonionizing Dose Calculations

*Although most of the electron energy is lost due to ionization effects (stopping power, dE/dx), displacement damage is the primary solar cell (pn junction) damage mechanism (NIEL) and has a minimum energy to produce a displacement (T_d)

*Ionizing Dose Calculation

$$TID = \int \frac{d\phi(E)}{dE} \frac{dE}{dx} dE$$

*Displacement Damage Dose Calculation

$$DDD(E_{ref}) = \frac{1}{S(E_{ref})^{n-1}} \int \frac{d\phi(E)}{dE} S(E)^n dE$$

*1 MeV electron fluence equivalent

$$\phi(E_{ref}) = \frac{1}{S(E_{ref})^n} \int \frac{d\phi(E)}{dE} S(E)^n dE$$