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Introduction

Space Based Solar Power (SBSP) demands lightweight (<50 g/m?), efficient
(20%), low-cost (<$1/W), and radiation hard (15 yr. at geostationary) solar
cells. With typical solar cell coverglass weighing 130 g/m?, it is important for
us to be able to model the performance of thin radiation shields.

Two standard tools for modeling solar cell radiation shields are EQFlux and
MC-SCREAM. EQFlux is insufficient for SBSP because its analytic proton-
range calculations underestimate the number of low-energy protons
transmitted to the solar cell.! MC-SCREAM uses accurate Monte-Carlo
calculations to simulate proton transmission but its critical MULASSIS
component, which calculates the slowed proton spectrum, is not readily
available, and its use of the non-ionizing-energy-loss diverges from
experimental damage estimates at low proton-energies.?

To overcome these limitations we wrote, and share, a code for Monte-Carlo
proton transmission and damage calculations. As written, it reads proton
spectra prepared by SPENVIS, uses TRIM to calculate how the protons
transmission spectrum through a radiation shield, and then uses the
empirical relative damage coefficient (RDC) method of EQFlux to determine
the effective radiation dose.3
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Goal: combine the pros of EQFlux and MC-SCREAM
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We predict more degradation for thin shield than EQFlux or MC-
SCREAM
We predict less degradation for thick shield than EQFlux or MC-
SCREAM

Discussion

Hydrogen-rich polymers as the bulk of shielding may reduce shielding
mass by 50%

35 g/m? of polyethylene could reduce the dose to

1% 10%® 1 MeV e~, which is compatible with SBSP targets with InP
solar cells

Future Work

|ldentify source of disagreement between our model and EQFlux
and MC-SCREAM for thicker radiation shields

Careful measurements of low-energy proton damage to devices are
needed to validate possibility of thin proton shields
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