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Abstract Scalable Fiber Fabrication
The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has developed photovoltaic fibers

¢ Scalable fiber fabrication is possible with conventional industry tools such as a solder jet printer, a pick-and-

(PVFs) including interdigitated back contact (IBC) crystalline silicon (c-Si) solar cells as small as 0.35 mm?. The olace tool, and a laser cutter

fiber was built on a flexible circuit strip as narrow as 400 pm and the solar cell was surface mounted on the ¢ Parallel assembly processes such as micro-transfer printing, fluid assembly, chiplet printing, and laser-induced

strip. The solar cells were cut out of the state-of-the-art IBC Si solar cell with power conversion efficiency
(PCE) of about 22 % under AM1.5 irradiation. The PCE of the fiber has reached up to 11 % under AM1.5
after encapsulation and PCE is expected to improve with further optimization in solar cell dicing. The fiber

forward transfer can be explored to lower the cost of fabrication and to increase the throughput
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did not show any performance loss after 8000 bending cycles with a bending radius down to 1 cm. The
bending test was not performed until failure and the minimum bending radius is expected be on the order of
millimeters. To demonstrate the practicality of the fiber technology, the fibers were woven into textiles
powering a light-emitting diode. The c¢-Si PVF has been tested under AMO irradiation and showed slightly

higher PCE than when measured under AM1.5 irradiation. Together with its potential for flexible space solar

Qower, the technology aligns well with current interest in Si solar cell technology for space power. /
Flexible Spqce SOIG r Power Figure 4: (a) 1 mm? c-Si cells in a pick-and-place compatible tray. (b) Solder jet printing process. (c) Pick-and-place process. (d) Fiber substrate
board after the solder paste was reflowed in an oven and the fibers were mostly isolated from the board using a laser cutter. j
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Figure 5: (a) c-Si PVF with a 1 mm? c-Si cell. (b) Power output characteristics of the PVF under AMO irradiation; Rocket Lab’s Z4J cell was used as a
reference cell. (c) External quantum efficiency of SunPower’s C60 solar cell from the vendor datasheet (https://solarmuseum.org /cells/284_sunpower/)
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A _ ° Figure 6: (a) Stability of a c-Si PVF exposed to a halogen lamp (100 mW /cm?) in a laboratory environment for six days. Reproduced with
T — 0.04—— | h permission [1]. Copyright 2024, Elsevier. (b) Thermal cycle data collected from a ¢c-Si PVF following a method outlined in IEC 6121 5.
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Figure 2: (a) lllustration of the c-Si PVF fabrication. (b) PVF with a single 0.35 mm? c-Si cell on a 400 um-wide fiber substrate, encapsulated with
ethylene vinyl acetate (EVA) using a roll-to-roll (R2R) process. (c) Best PCE reported for c-Si PVF (1mm? c-Si cell on a 1.5 mm-wide fiber

Summary

** This work demonstrates an approach for achieving flexible space solar power using textile-based

substrate). (d) Power output characteristics of a c-Si PVF before and after bending fatigue. (e) PVFs (with 0.35 mm? c-Si cells) woven into a

textile in a loom. Reproduced with permission [1]. Copyright 2024, Elsevier. (€) T oem c.si 8 sotar con [ Fiber with a 0.5 i c.51 cut ool photovoltaic (PV) devices. This technology could enable new space structures such as inflatable space stations
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