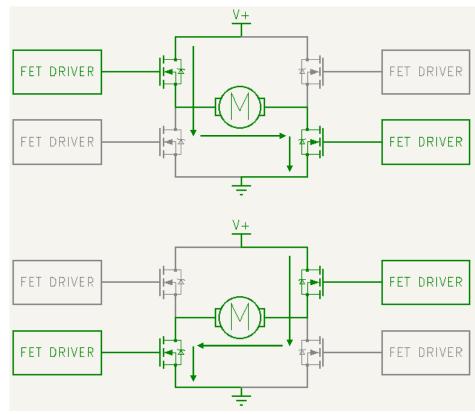


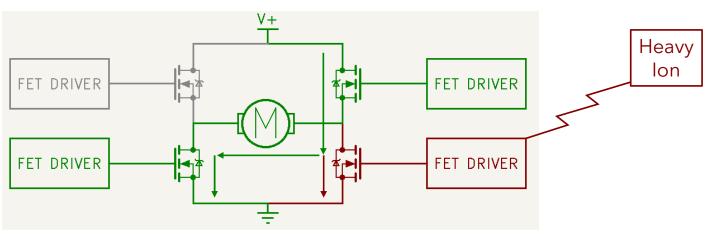
Novel Protection of Half-Bridges in Space Environments

Alex Billings


apogeesemi.com

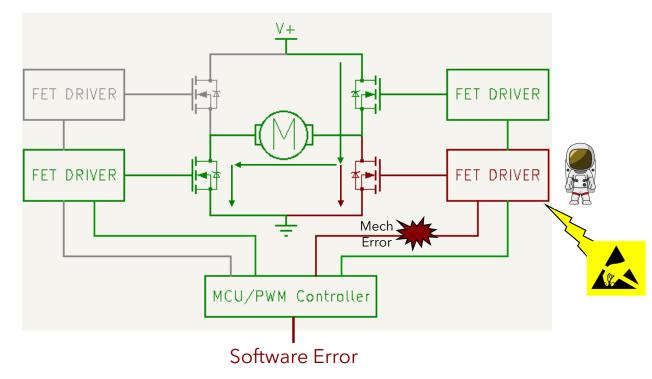
Shoot-Through

- + High-reliability power systems where half-bridges or push/pull drivers are used commonly have issues with cross-conduction (or shoot-through)
- + Switching between push and pull, or between the high-side and low-side devices could cause the power supply to temporarily short to ground
- Depending on the application, this could be fatal to a system



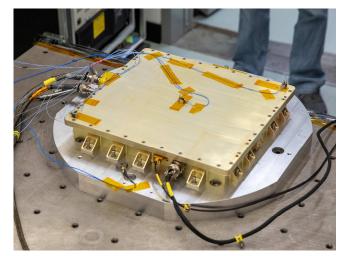
SET-Induced Cross-Conduction

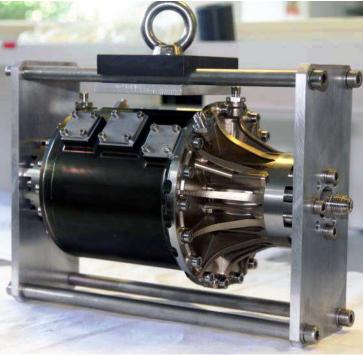
- + Single Event Transients (SETs) could also cause the high-side and low-side devices to conduct simultaneously
- + Thus, space-based power systems are even more at-risk of permanent system degradation and shortened lifetimes



Other Sources of Error

- + ESD/Static buildup
- + Mechanical damage from spacecraft automation
- + Human error
- Software error



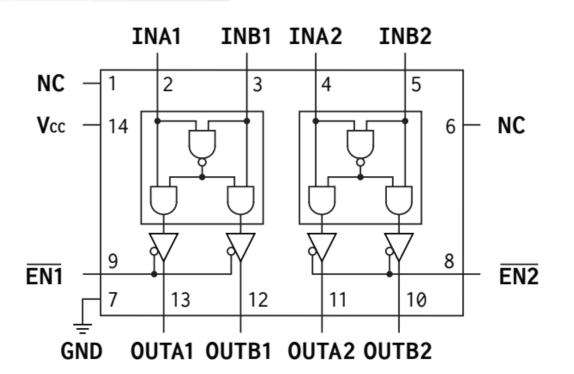

Applications

- + Cross-conduction appears in a wide range of systems:
 - + Motor controllers *H-bridges*
 - + Push-pull drivers *Half-bridges*
 - + Thrusters
 - + Power converters
 - + Inverters
 - + Squib
 - + Separation bolts

https://www.nasa.gov/centers-and-facilities/langley/clarreo-pathfinder-power-converter-unitcompleted/

https://www.maccon.com/space-rated

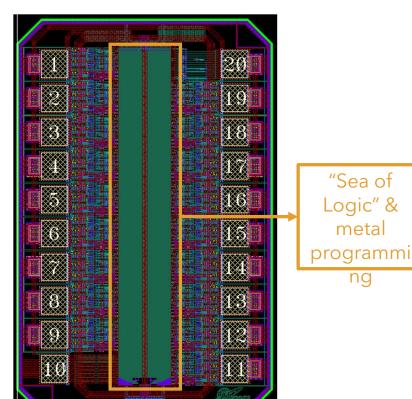
Simple Solution – AP54RHC288


- The AP54RHC288 Dual Channel Signal Arbiter protects half-bridges by employing a novel feedback solution
- + Guarantees that only the high-side or low-side is active at any time, effectively preventing cross-conduction in half-bridge configurations
- + Reliably driving half-bridges allows for the use of less radiation-tolerant components within the power system itself

Logic Diagram

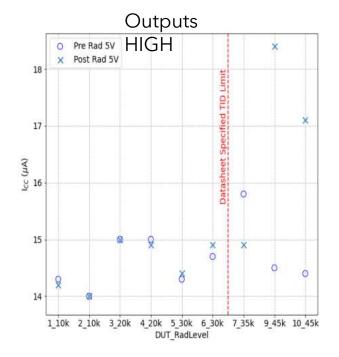
	Input		Output		
INA _n	INB _n	ΕN _n	OUTAn	OUTB _n	
L	L	L	L	L	
L	Н	L	L	Н	
Н	L	L	Н	L	
Н	Н	L	L	L	
Х	Х	Н	Z	Z	

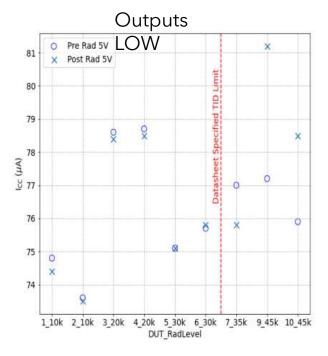
Features


- + Full range of voltage operation (1.65V to 5.5V)
- + Extended temperature range (-55°C to 125°C)
- + Class 2 ESD protection (4,000V HBM, 500V CDM)
- + Built-in triple redundancy from pin to pin
- + Internal Power-On-Reset circuit ensures reliable power-up and power-down responses in cold-sparing/hot-plugging applications
- + Two enable pins one for each individual device channel
- + Dual-channel allows for mediation of both half-bridges in an H-bridge

Warhol Family - RadFlex

- + This device is a member of the Warhol AP54RHC family, which utilizes RadFlex technology
- + RadFlex allows for quick-turn radiationhardened custom logic designs by way of a "sea of logic" architecture
- + All products in the Warhol family are manufactured with the exact same set of base layers
- Custom metal mask is created per unique design



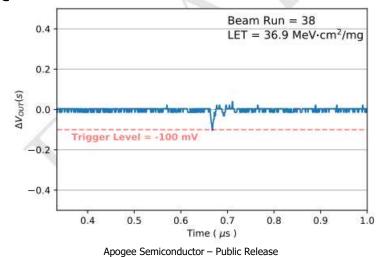


TID Results

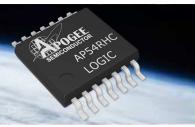
- + TID resilience of up to 30 krad (Si)
- + <1% shift in all measured parameters during dosing up to the datasheet-specified limit

SEL Results

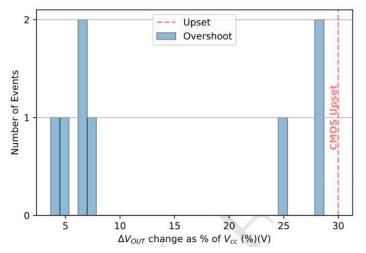
- + SEL immune up to LET of 74.7 MeV•cm²/mg
- + No SELs were observed across 7 DUTs and 26 total beam runs
- + Tested at worst-case biasing conditions, voltage supplies, and temperature

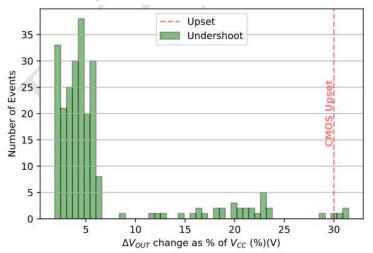

Run #	Ion	LET	Temperature	VDDA	VDDB	Angle	Air Gap	Flux	Fluence	Result
120	Но	75	105°C	1.65 V	1.65 V	0°	2.5 cm	1.55e+05	9.98e+06	No Latchup
121	Но	75	105°C	5.5 V	1.65 V	0°	2.5 cm	1.59e+05	1.0e+07	No Latchup
122	Но	75	105°C	1.65 V	1.65 V	0°	2.5 cm	1.57e+05	1.0e+07	No Latchup
123	Но	75	105°C	5.5 V	1.65 V	0°	2.5 cm	1.55e+05	1.0e + 07	No Latchup
Unit 2	AP54I	RHC50	4 Assembly Lot	216 Uni	t-Label L	13				-0
124	Но	75	105°C	1.65 V	1.65 V	0°	2.5 cm	1.59e+05	9.96e+06	No Latchup
125	Но	75	105°C	5.5 V	1.65 V	0°	2.5 cm	1.61e+05	9.98e+06	No Latchup
126	Но	75	105°C	1.65 V	1.65 V	0°	2.5 cm	1.51e+05	1.0e+07	No Latchup
127	Но	75	105°C	5.5 V	1.65 V	0°	2.5 cm	1.58e+05	9.95e+06	No Latchup
Unit 3	AP54I	RHC50	4 Assembly Lot	216 Uni	t-Label L	7)			100000000000000000000000000000000000000	
128	Но	75	105°C	1.65 V	1.65 V	0°	2.5 cm	1.66e+05	9.91e+06	No Latchup
129	Но	75	105°C	5.5 V	1.65 V	0°	2.5 cm	1.71e+05	9.97e+0	No Latchup
130	Но	75	105°C	1.65 V	1.65 V	0°	2.5 cm	1.70e+05	1.0e+07	No Latchup
131	Но	75	105°C	5.5 V	1.65 V	0°	2.5 cm	1.17e+05	1.0e+07	No Latchup

SET Results



- + SET immune up to LET of 36.9 MeV-cm²/mg
- + Over 12 total beam runs, the largest event captured in this LET range had a maximum undershoot magnitude of 103mV, corresponding to a 1.88% of V_{CC} change in V_{OUT}
 - Not large enough to be classified as a SET (or CMOS upset)





SET Results Pt. 2

- + SET resilience of up to LET of 74.7 MeV•cm²/mg
- + An event which causes V_{OUT} under-shoot or over-shoot by 30% of V_{CC} is characterized as a CMOS-disruptive upset (SEU) or transient (SET)
- + Over 66 total beam runs, 4 such events were captured

SET/SEL Cross-Section

- + SET cross-section was calculated with onset LET of 36.9 MeV•cm²/mg, where no SETs were captured
 - + LET of 74.7 MeV•cm²/mg is assumed in the calculation of the maximum observed saturated (upper limit) SET cross-section
- + SEL cross-section was calculated with onset LET of 74.7 MeV•cm²/mg, where no SELs were captured

SET Event Rate:

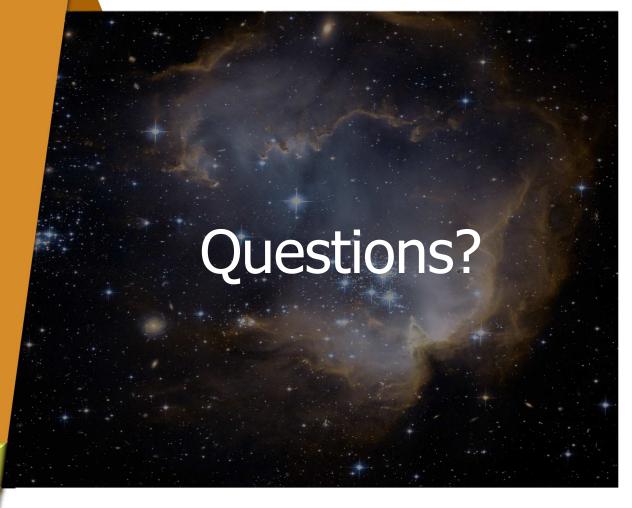
Application	Integral Flux @ LET 36.9 [particles/cm ² -day]	Upper Limit σ_{sat} [95% CI] [cm ²]	Event Rate [per day]	MTTU [Years]	
GEO	4.78e-03	7.95e-07	8.31e-10	721e+03	
LEO (ISS)	1.04e-03	7.95e-07	3.80e-09	3.30e+06	

SEL Event Rate:

Application	Integral Flux @ LET 74.7 [particles/cm ² -day]	Upper Limit σ_{sat} [95% CI] [cm ²]	Event Rate [per day]	MTTU [Years]
GEO	1.80e-04	3.70e-08	6.61e-12	414e+06
LEO (ISS)	6.02e-05	3.70e-08	2.22e-12	1.24e+09

Conclusion

- + Cross-conduction in half-bridges is a common issue in power systems
- + The AP54RHC288 is a PEM logic device that provides a simple solution to solve this relevant problem one device protects an entire H-bridge
- + Asynchronous arbitration logic ensures that neither the high-side or lowside devices in a half-bridge could be enabled at the same time
- + Radiation-Hardened by Design TID/SEL/SET tested for high-reliability LEO applications
- + Coming soon in 300krad PEM GEO family, and both families will be available in ceramic packaging



972-559-4660

apogeesemi.com

