
Investigation of COTS Li Ion Cell Performance at Low Temperature

Space Power Workshop 2024

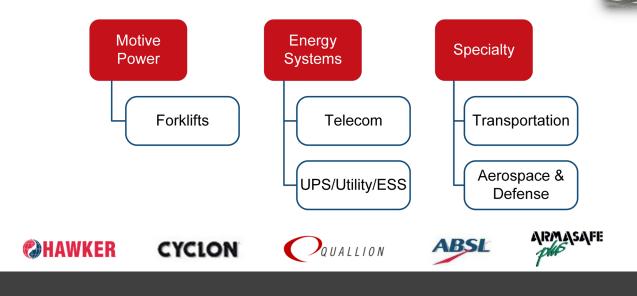
Ryan Pritchard Principal Project Engineer, ABSL Space Products

POWERING THE FUTURE Everywhere for Everyone.

Approved for Public Release

Contents

- Introduction
 - ABSL Capabilities
- Motivation
- Test Objective
- Test Design
- Results
- Next Steps


The Power of EnerSys

- World's Largest Industrial Battery Company ~ \$4B annual sales
- Leading brands in wide range of end-user markets
- US-owned / Publicly Traded
- Global Over 10,000 employees with over 30 locations in 18 countries
- Recent acquisition of Alpha Technologies Group, NorthStar Battery

ABSL Longmont,

CO

Approved for Public Release

Aerospace and Defense

Facility Locations

Manufacturing Facilities

- Santa Clarita, CA
- •Longmont, CO
- •Warrensburg, MO
- •Horsham, PA
- •Tampa, FL
- •Culham Oxfordshire, UK

EnerSys.

Full Solutions

RSF

Six Engineering Locations Serving Multiple Markets							
Business Line	Business Line Brands Technology						
			Longmont, CO				
Space	ABSL/Quallion	Lithium-Ion Materials, Cells, & Batteries	Santa Clarita, CA				
			Culham, UK				
Aviation	Hawker/Quallion	Lead Acid (Thin Plate), Ni-Cd & Li-Ion	Warrensburg, MO				
Medical & Space	Quallion	Cells & Batteries	Horsham, PA				
Munitions	EAS	Lithium Primary, Liquid Reserve & Thermal Batteries	Horsham, PA Tampa, FL				
Land & Sea	Armasafe / Hawker	Lead Acid (Thin Plate & Flooded/Cylindrical)	Warrensburg, MO				

ABSL Facilities Overview

Longmont, CO

- ABSL opened its US operations in 2008 to serve all aspects of the US space market
- ABSL joined the EnerSys family in 2011
- 100+ passionate staff members
- Wide range of engineering capabilities
- AS9100 certified & ITAR compliant
- All batteries are assembled and tested on-site

- ABSL cell screening & processing
- Contamination-controlled
 manufacturing rooms
- Destructive and environmental test laboratories
- Dedicated product development space
- Secured inventory stores including a strategic stockpile of cells
- In house CT Scanner

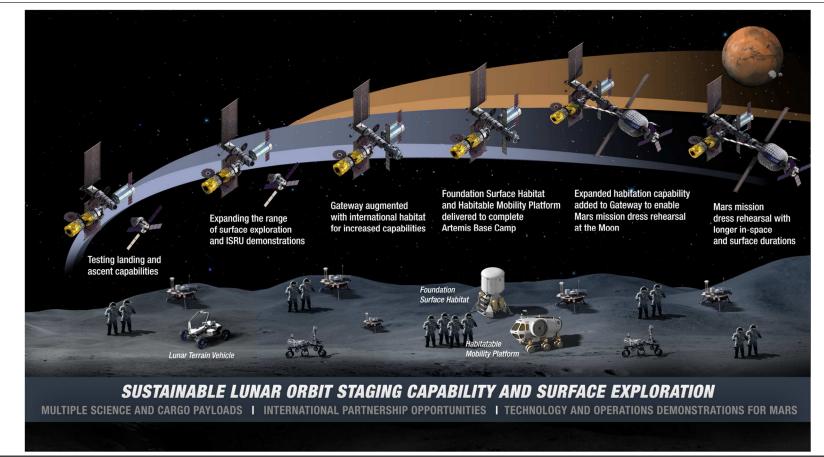
ABSL Qualified Cell Suite

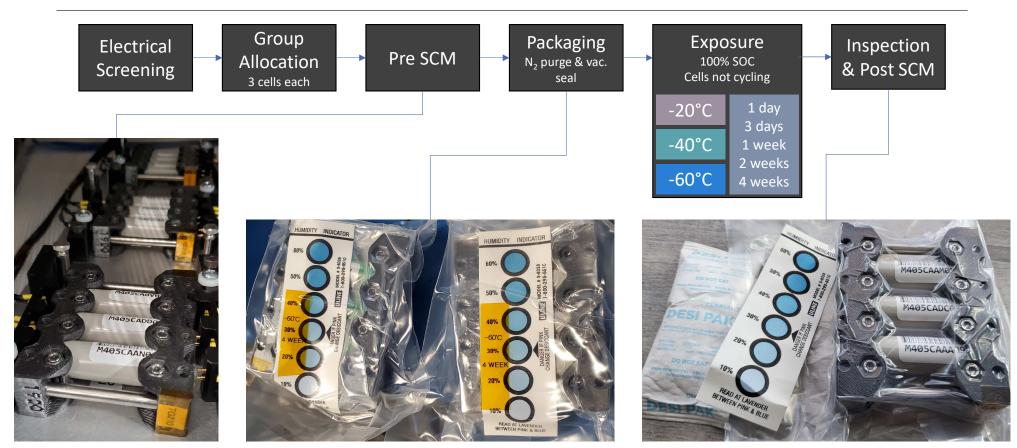
Cell	Chemistry	Capacity	Max Current	Notable Characteristics
18650 HCM	Cath.: LCO An.: Hard Carbon	1.5 Ah	1.5 A	Long Cycle Life, PTC
18650 P20	Cath.: NMC An.: Graphite	2.0 Ah	20 A	High Rate
18650 28	Cath.: LCO An.: Graphite	2.8 Ah	5 A	Medium Energy, PTC
18650 E35	Cath.: NMC An.: Gr-Si	3.5 Ah	10 A	High Energy
18650 M28	Cath.: NCA An.: Gr-Si	2.8 Ah	35 A	High Rate, Medium Energy Cell qual on-going

Motivation

- Lunar night is typically -133°C, 14 days long
- Thermal management systems are expensive
 - Mass, power
- Increase mission resiliency to off-nominal conditions
- Recent missions have successfully resumed following lunar night
 - Academic literature shows similar results

Motivation




Image Credit: NASA

Test Objective

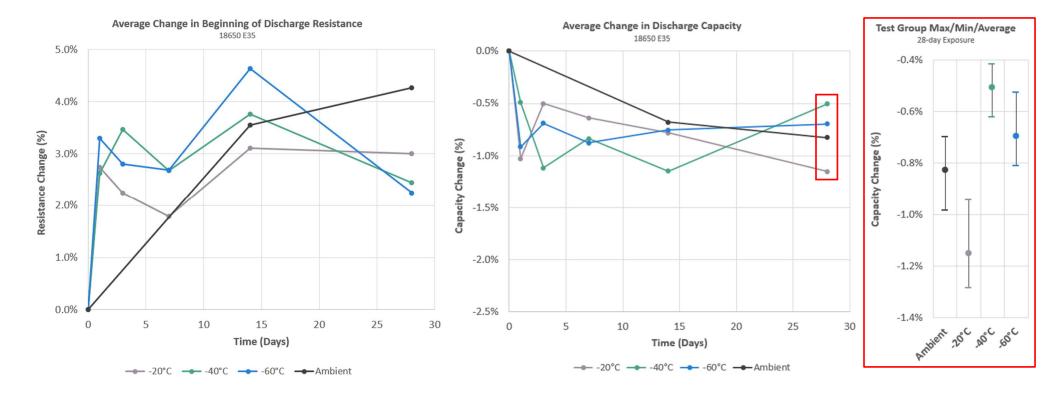
- <u>Goal</u>: Quantify the degradation of exposure beyond the rated -20°C limit
- Expect that there is an adverse impact to cell health
 - Characterize the specific impacts to the 18650 E35 & 18650 M28
 - Inform future testing efforts
 - Inform future design development efforts
- Expand acceptable temperature limits to benefit mission operations
- Test flow mimics standard cell storage test efforts

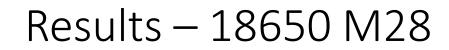
Low Temperature Test Flow

Low Temperature Test Groups

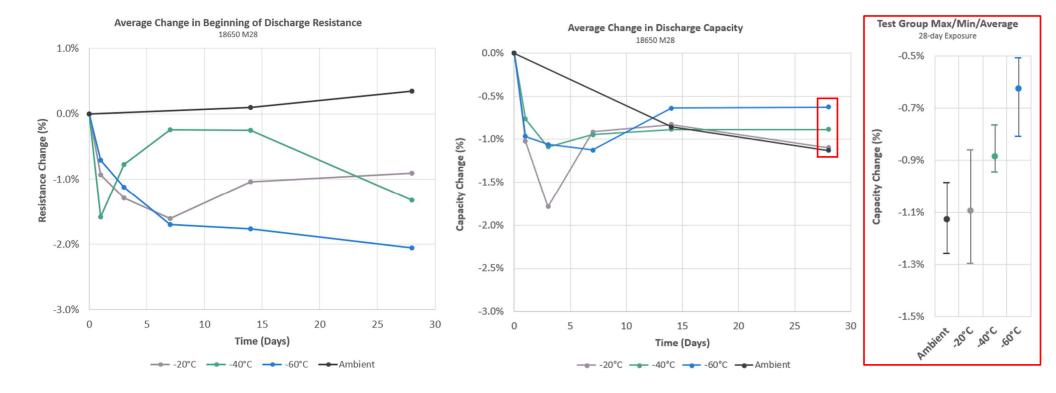
Temperature	-20°C		-40°C		-60°C		Lab Ambient*	
Duration (days)	E35	M28	E35	M28	E35	M28	E35	M28
1	TG101	TG201	TG106	TG206	TG111	TG211	N/A	
3	TG102	TG202	TG107	TG207	TG112	TG212		
7	TG103	TG203	TG108	TG208	TG113	TG213		
14	TG104	TG204	TG109	TG209	TG114	TG214	TG116	TG216
28	TG105	TG205	TG110	TG210	TG115	TG215	TG117	TG217


* Lab Ambient: 23±5°C, 30 to 70% RH


Pre-/Post-Exposure SCM


Step	Process
1	Charge at C/5 to 4.2 V Taper to C/100
2	Discharge at C/2 to 2.5 V
3	Charge at C/5 to 4.2 V Taper to C/100
4	Repeat 2 & 3 Three total cycles

- Profile also includes rests to calculate EOC/EOD DCIR
- SCM ends at 100% SOC
- C-rates:
 - E35: 3.5 A
 - C/2 = 1.75 A
 - C/5 = 0.7 A
 - M28: 2.8 A
 - C/2 = 1.4 A
 - C/5 = 0.56 A
- SCMs performed at 20°C



Results Discussion

Average Change in Discharge Capacity

Temperature	-20°C		-40°C		-60°C		Lab Ambient	
Duration (days)	E35	M28	E35	M28	E35	M28	E35	M28
1	-1.028%	-1.021%	-0.491%	-0.764%	-0.914%	-0.968%		
3	-0.501%	-1.783%	-1.117%	-1.085%	-0.688%	-1.058%	N/A	
7	-0.637%	-0.912%	-0.835%	-0.947%	-0.878%	-1.124%		
14	-0.783%	-0.829%	-1.147%	-0.887%	-0.755%	-0.638%	-0.679%	-0.855%
28	-1.152%	-1.094%	-0.505%	-0.886%	-0.696%	-0.627%	-0.826%	-1.128%

No Adverse Impact to Cell Performance

Results Discussion

Potential Future Work:

- On-going life cycle testing
 - 14 days at 20°C, continuous cycling at C/3
 - 14 days at -40°C, discharge C/560
- Longer exposure to tested temperatures
- Exposure to further extreme temperatures
 - Nighttime lunar surface: -133°C
- Rate characterization at colder temperatures
- Community feedback

Standard Designs

Configuration		Capacity	Cont. Current	Physical	
Battery	Cell	(Ah)	(A)	Dimensions (mm)	Mass (kg)
8s3p	128	8.4	16.8	176 x 96 x 98	1.66
8s10p	E35	35	14*	260 x 210 x 103	5*
8s16p	E35	56	25	364 x 204 x 98	7.8
8s44p w/ Relays	128	105	52.8	432 x 257 x 164	22.9
8s72p	E35	252	50	532 x 326 x 245	36.4
8s84p	128	180	42	713 x 310 x 181	49.6

8s3p I28

Snake Series High Energy Designs

Configuration		Capacity Cont. Current		Physical		
Battery	Cell	(Ah)	А	Dimensions (mm)	Mass (kg)	
8s32p	E35	112	112	603 x 402 x 97	31	
8s72p	E35	252	252	371 x 371 x 230	48	
8s80p	E35	280	280	603 x 402 x 177	68	
8s128p	E35	448	448	603 x 402 x 256	100	

8s32p Boa

8s80p Python

8s128p Anaconda

Further Offerings

- Heritage HCM designs
- High voltage battery designs
- Human-rated applications
 - Thermal runaway mitigating features
 - Integrated monitoring electronics
- Custom designs
 - Restrictive volume requirements
 - Magnetically clean designs
 - Unique mission parameters
- Large format 72 Ah cell applications

EnerSys

Contact Information

- Ryan Pritchard Principal Project Engineer
 - <u>Ryan.Pritchard@EAS.Enersys.com</u>
- Roger Carlone Senior Business Development Manager
 - <u>Roger.Carlone@EAS.Enersys.com</u>
- Gerard Herbert Business Development Representative
 - <u>Gerard.Herbert@EAS.Enersys.com</u>

Acknowledgements

- Wesley Hoffert, Engineering Manager
- Josh Fedders, Chief Engineer
- **ABSL Product Development**
 - Jesse Branken, Principal Product Engineer
 - Jessee Kirkland, Cell Processing Lead
 - Justin Rauchwarg, Product Engineer
 - Caroline Norris, Product Engineer
 - Alex Saldana, Product Engineer
 - Rachel Garman, Product Engineer
 - Andres Medina, Product Development Test Technician

