Epitaxy-Free, Thin-Film, GaAs Solar Cells with V_{oc} Greater Than 900 mV

Phil Jahelka¹, Andrew Nyholm¹, and Harry A. Atwater¹

1. California Institute of Technology, Pasadena, CA, USA

Solar Cells Are A Cost Driver For Mega Constellations

- Traditional III-V space cells cost \sim \$100/W
- A Starlink satellite costs roughly \$300k and uses 6 kW of power
 - III-V cells for Starlink would cost 600k
 - III-V cell cost is twice the cost of the satellite
 - This is why Starlink uses silicon cells at 0.5/W

Space Solar Power Project Concept

Caltech
Space Solar Power Project

Space Solar Power Project Prototyping

Atwater Group

7/22/2024

Pellegrino Group

'Scientists beam solar power to Earth from space for 1st time ever'

- Space.com

Hajimiri Group

Space Solar Power Needs New Solar Cells

- Consider an Space Solar Power Station selling power to the grid for 5¢/kWhr
 - Basic technoeconomic analysis argues cells must be $<\$1/W,<50 {\rm g/m^2},\eta>20\%$ and survive for 15 years at GEO
- No existing solar cell meets these requirements

7/22/2024

Caltech Space Solar Power Project

Requirements for SSPP Solar Cells

Low Cost Devices

- Scalable and affordable III-V devices require the elimination of epitaxy in production
- Following a Si-style production mindset, we create the p/n junction through diffusion doping

Radiation Hard

- 15 years at GEO
- Thin film, III-V devices are intrinsically radiation hard
- Prolonged space environmental testing performed with ALBA payload on SSPD-1
 - Mike Kelzenberg Thursday at 10:15

- Spalling is a demonstrated method to yield continuous, thin films from bulk
- Spalled thin films reduce materials cost substantially
- We demonstrate preliminary spalled, non epitaxial devices from commercial GaAs

Our Vision for Low-Cost III-V PV

- Use diffusion doping to make the p/n junction without epitaxy
- Spall thin films to reduce capital and materials cost per Watt by turning a single melt-grown wafer into many solar cells
- Change III-V device philosophy
 - "The best device possible"
 - "The best device possible, with Si-style processing"

Simplified GaAs Diffusion Doping Process

- Source is simply zinc metal
- 400°C > 2hr to 550°C < 15 min in 5% $\rm H_2$
 - Sheet resistances between 10 $k\Omega/\square$ and 100 Ω/\square
 - Surfaces stay mirror-smooth
- Process is reliable and repeatable
 - Process has worked for over 100 runs excluding gross contamination issues

Al₂O₃ Box

Commercial Wafers limited by Hole Diffusion Lengths

- Substrate quality determines minority hole diffusion length, L_p, and long-wavelength response
- Want $L_p > 5 \ \mu m$ for J_{sc}
- Commercially available bulk GaAs has $L_p \leq 1 \ \mu m$
- Limited by the EL2 (V_{Ga}As_{Ga}) defect

, **Caltech** Space Solar Power Project

Low EL2 Concentration GaAs

- Growth from vapor
 - Growth temperature, 650 °C, is below the EL2 formation reaction temperature of 700 °C
 - [EL2] < $5 \times 10^{14} \text{ cm}^{-3}$
- Growth from Ga-rich melt
 - As_i readily absorbed by the melt
 - Remote As source maintains melt stoichiometry
- Out-diffusion of EL2
 - Annealing in As-poor ambient removes EL2

7/22/2024

- GaAs \rightarrow V_{As} + 1/2As₂
- $V_{As} + As_{Ga} \rightarrow V_{Ga}$
- $V_{As} + V_{Ga} \leftrightarrow 0$

Kiessling, F. M., (2004). Growth of GaAs crystals from Ga-rich melts by the VCz method without liquid encapsulation. *Journal of Crystal Growth*

Chichibu, S., (1998). Effects of controlled As pressure annealing on deep levels of 10 liquid-encapsulated Czochralski GaAs single crystals. *Journal of Applied Physics*

HVPE Growth or Annealing Melt-Grown Wafers Improves $L_p \text{up}$ to $9\ \mu m$

ARCH GRO

Space Solar Power Project

Champion Bulk Cell Results

- With emitter thinning, passivation, and ARC
- Best cell is 18.2% efficient
 - Comparable to Al-BSF Si cells
- Measured at NREL
- Previous literature best is 14.1%

Garozzo, M., Parretta, A., Maletta, G., Adoncecchi, V., & Gentili, M. (1986). GaAs shallow homojunction solar cells fabricated on thin epitaxial films by a simple Zn solid state diffusion method. *Solar Energy Materials*, *14*(1), 29–49. https://doi.org/10.1016/0165-1633(86)90011-0

Transitioning from Wafer to Thin-Film Devices

- Epitaxy free GaAs device
 - Front junction cell
 - 300 μm thick GaAs from wafer
 - 18.2% efficient champion performance
- Spalled GaAs cells
 - 3 μm thick spalled GaAs
 - Kapton back handle layer

¹³ Caltech Space Solar Power Project

Semiconductor Spalling

- Can make thin III-V films by electroplating a stressed layer and removing with tape
- Have demonstrated 2 μm thick GaAs so far
- Spalled films are flexible
- Spall reveals 110 surface

https://publishing.aip.org/publications/latest-content/thinking-thin-bringsnew-layering-and-thermal-abilities-to-the-semiconductor-industry/

Thin-Film Device Fabrication

Preliminary Thin-Film Devices

Spalled Film with deposited contacts

Finished spalled device

Preliminary Thin-Film Device Performance

- EQE is consistent with frontjunction device
- Short hole diffusion length
 - < 1 μm
 - Expected from using melt-grown, unannealed GaAs

Preliminary Thin-Film Device Performance

- 4.7% efficiency, 903 mV V_{oc}
- IV is consistent with a diffused junction device
- Free from shunting
- Ideality factor of 2 due to lowquality bulk GaAs

- Specific power of 500 W/kg including tape backing
- Still very early days

Future Work

- Fabricate devices on annealed GaAs to improve photocurrent
- Refine spalling process to be able to produce larger devices
- Develop optoelectronic simulations for calculating efficiency limits of thin-film devices

7/22/2024

¹⁹ Caltech Space Solar Power Project

Summary

- Proposed a non-epitaxial III-V cell concept motivated by near-term space demands
- A simple, reliable method for p-type GaAs diffusion doping
- Long diffusion lengths in bulk GaAs
- High performance devices on HVPE-grown GaAs
- Preliminary fabrication and performance of thin-film, diffusion doped cells

Simplifying GaAs Diffusion Doping

- Historically done at $> 650^{\circ}\text{C}$ to make junctions $> 1 \mu m$ deep
- At > 650° C:
 - Arsenic pressure is large; need to use sealed ampoule or capping film
 - Vapor is mostly As; hard to get rid of Ga_i
 - Use Zn₃As₂ source or SiO₂ capping film
- Simply diffusing at lower temperatures fixes all these problems
 - Arsenic pressure is manageable
 - GaAs preferentially evaporates Ga, so doping stays favorable
 - Zn still has a good vapor pressure

