National Aeronautics and Space Administration

Cryogenically-Operable Electronics for Surviving the Lunar Night

Space Power WorkshopApril 25, 2024

Presented by: Nicholas R. Uguccini

Richard C. Oeftering, Thomas B. Miller, Dr. Brian A. Holler NASA Glenn Research Center

nicholas.r.uguccini@nasa.gov

The Extreme Lunar Environment

Thermal model calculations of monthly and annual lunar surface temperature variations at various latitudes.Image permissions per Dr. N Petro/NASA GSFC, Dr. D Paige/UCLA

Day:

• **150-400 K high temperatures based on latitude**

Night:

• **50-100 K low temperatures**• **~14.75 Earth days duration (non-polar latitudes)**

Polar Winter:

- **50 K low temperature**
- **~135 Earth days duration**

Current Lunar Night Survivability Options

Commercial Lunar Payload Services (CLPS): commercially-developed lunar landers to provide a low-cost delivery to the lunar surface

- • Currently, all CLPS missions are solar powered, and lunar night survival will likely be a requirement in the future
- • Existing non-nuclear survival options require generating and/or retaining heat throughout the night
	- \bullet Heaters powered via large mass batteries
	- \bullet Generating heat via consumable chemicals
	- At poles, there are areas with longer periods of sunlight, but not 100% illumination
- • Example: Lunar Terrain Vehicle (LTV) estimates 15 to 30 kWh just to heat overnight, which would represent 100 to 200 kg of extra battery mass!

Lunar Terrain Vehicle (LTV) concept art. *Image Credit: NAS*

The Hibernation Option

Lunar Power Hibernation: disconnect the batteries, allow all systems to freeze, then enter a controlled thaw at dawn

- •All on-board systems must be cryogenically tolerant
- \bullet Some electronics must be cryogenically operable
- • Huge benefits if implemented
	- **Low cost:** obtainable with COTS electronics \bullet
	- \bullet **Low mass:** extra battery power not required
	- **Low impact:** only require bootstrap power \bullet systems to be cryogenically operable
	- \bullet **Increases capability:** a single night survival doubles mission length
- •Feasibility has been demonstrated

Smart Lander for Investigating Moon (SLIM) lander. Image Credit: JAXA

Battery Technology for Power Hibernation

NASA Glenn is testing lithium-ion batteries across multiple freeze/thaw cycles

- • Operating Li-ion cells while frozen is not possible; disconnecting the battery from the bus before freezing prevents improper charging/discharging cells
- • Tests have been conducted with high-energy COTS cells (LG INR18650-M36 and Molicel INR18650-M35A)
- • Tested single cells at 50 K with 0%, 20%, and 40% stateof-charge under multiple lunar hibernation sequences
- • Tested series-connected and parallel-connected cell string configurations

Battery Test Results

Preliminary data shows tested COTS cells are cryotolerant in a vacuum

- Cells consistently survived cryogenic exposures under •vacuum at ~50 K with 14-day dwells
- \bullet Cells recover open circuit voltage, show no distinguishable mass loss, and have minimal impact to discharge capabilities after returning to operational temperatures

• Future work: Explore higher states of charge, additional measurements and tests, more lunar night cycling

Power Electronics Technology for Hibernation

Revival from hibernation requires power electronics that survive and operate in cryogenic vacuum conditions

Cryo-tolerance is essential for passive night survival

- \bullet Circuit board and device packaging must tolerate repeated exposure to extreme low temperatures (thermal–mechanical stress)
- •Physical size of boards and devices can influence reliability

Cryo-operable electronics assures reliable power recovery at lunar dawn

- \bullet Cryo-operability requires stable "cold start" operation at 50 K
- $\mathop{\mathsf{C}}$ Begins operation when solar arrays are first illuminated
	- Capable of managing power on solar array output alone•
	- •Preheats batteries and passive avionics for restart
	- •May perform battery diagnostics and pre-charging

Power Electronics Technology for Hibernation

NASA Glenn has developed a cryo-operable power supply demonstrator with COTS components

- • Sequential Switching Shunt Regulator (S3R) module capable of regulating power to external loads via eight "solar strings"
- • Designed with component types that have been shown to be operable at low temperatures
- • Accomplishments:
	- Stable operation throughout temperature ramp from 300 K down to 50 K
	- Cold start capability at 57 K after cold soak \bullet
	- \bullet Continued operation for over 100 hours
- • Current work:
	- •Evaluating cryo-operability of microcontrollers

Cryogenic vacuum chamber setup.

S3R Board

- • Feedback and error amplifier
	- •Voltage reference (Zener diode)
	- •Voltage feedback (thick film resistors)
	- \bullet Comparator (JFET op-amp)
- • Eight shunt "cells" – one for each solar string
	- •Array shunting FET (silicon MOSFET)
	- •Blocking diode (silicon Schottky diode)
	- •Comparator circuit (JFET op-amp)
- • Auxiliary power
	- \bullet 12 V linear regulator (CMOS LDO)
- • Output capacitance
	- Tantalum capacitors, 5x 22 uF•

Stable operation across the temperature range and tested load profiles

- \bullet Output voltage drops with temperature due to drifting Zener voltage
- \bullet 12 V linear regulator was stiff for the entire temperature range
- \bullet Capacitor bank ESR increases and capacitance decreases w/ lower temps
- \bullet Forward voltage of Schottky diodes rises approximately 250% at cryo

Gate Drive Signal at Steady State

- \bullet Channel 2: FET3 (Si1480DH MOSFET) gate drive voltage from TL071 op-amp
- \bullet Test Condition: ~20 W load on main bus; String 3 is the active switching cell
- \bullet Results: Minimal change in operation

Heavy Load Transient

- \bullet Channel 2: FET3 gate drive voltage; Channel 1: Output bus voltage, AC coupled
- \bullet Test Condition: No load on bus, ~30 W load on bus at trigger
- \bullet Results: Minimal change in operation

Bus Voltage at Light Load

- Channel 1: Output bus voltage, AC coupled; Channel 4: FET8 gate drive \bullet
- \bullet Test Condition: No load on bus, only load is <1 W for auxiliary power
- \bullet Results: At cryo, cap bank ESR increases ~500% and capacitance decreases ~16%

Forward Work

Lessons learned to improve design

- •Use resistor divider for voltage reference
- • Investigate different families of op-amps
	- •OPA191 CMOS op-amps
- • Investigate different bulk capacitor types
	- \bullet Solid polymer tantalum electrolytics
- •Add layers/thickness to increase heat sinking and minimize local heating effects

Software integration on S3R board

- •Collect telemetry on-board, including temps
- • Program rudimentary "dawn mode" by commanding dummy loads

Hibernation Technology Contributions

- Utilizing cryo-operable and cryo-tolerant electronics to revive frozen Li-ion cells will enable reliable operation of low-cost robotic missions over multiple lunar cycles
- Hibernation integration will have huge benefits with low risk
	- \bullet **Low cost:** attainable with COTS electronics
	- **Low mass:** extra battery power not required
	- **Low impact:** only require bootstrap power systems to be \bullet cryogenically operable
	- **Increases capability:** a single night survival doubles mission length•

Space Power WorkshopApril 25, 2024

Cryogenically-Operable Electronics for Surviving the Lunar Night

Presenter: Nicholas R. Uguccini, nicholas.r.uguccini@nasa.gov

Richard C. Oeftering, richard.c.oeftering@nasa.gov Thomas B. Miller, thomas.b.miller@nasa.govDr. Brian A. Holler, brian.a.holler@nasa.gov NASA Glenn Research Center

Cleveland, Ohio 44135