Effects of Pressure Distribution Within Battery Cells

Jarred Olson, Michael Angell, Daniel Shoemaker, Aaron Reed, Justin Stocker, Joanna Cardema

April 23, 2024

Background and context

• Batteries require multiple cells configured electrically and *mechanically* prior to deployment for an intended application

• Studies recognize the influence of local pressures on cell performance and electrochemical degradation:

We seek to understand the impact of pressure distribution on the cycling behavior of cells

Materials and methods

- 1. Measurements collected at 20°C
- 2. Cell and cycling details:
 - NMC|graphite pouch cell, 10 Ah
 - Dimensions(LxWxH) 141.2mm x 91mm x 9.2mm
 - Two cells for each test condition:
 - C/2 cc + C/20 CV charge \rightarrow 4.2 V; C/2 cc discharge \rightarrow 2.75 V
- 3. Tekscan sensor, model 5101
 - Spatial resolution: 6.25 mm²
- 4. Compression fixture: metallic plates and polyurethane foam to enclose cells under the following conditions:
 - a) Homogeneous compression
 - b) Heterogeneous compression:
 - i. Close to current-collecting tabs (S1)
 - ii. Distanced from current-collecting tabs (S2)

Measurement Assembly

Mapping

Example: Pressure gradient S1>S2; cell 1

Tekscan© Mapping Interface

Pressure ranges across cell from 10 – 75 PSI

Real-time measurements

Example: Pressure gradient S1>S2

Top of charge and end of discharge correlate with the maximum and minimum pressures within the cell

Trends in electrochemical performance

Influence of applied pressure on cycling behavior

Cells without pressure gradient maintain higher SoH than cells with pressure gradients

30 -0.140 0.181 0.238 **29** Section 2 Pressure (PSI) (S2) 0.132 Section1 0.183 (S1) 26 **25** -00:00 05:00 10:00 15:00 Time (HH:mm)

Calibrated Pressure 🗙

PSI

150.000 🔿

112.500 103.125 93.750 84.375 75.000 65.625 56.250

18.750 9.375

>= 0.000

0

0.000

Pressure evolution as a function of cycling

Example: S1>S2

Pressure irreversibly builds within cell while cycling

Mapping changes in pressure across cells

Pressure gradient S1>S2

Distribution of pressures across cells can be visualized using maps at specific reference points

Visualizing Pressure Changes (APSI) During Cycling

Homogeneous pressure (S1=S2)

ΔPSI/cycle distributes homogeneously across cell; irreversible pressure builds up as cycling progresses

Visualizing Pressure Changes (ΔPSI) During Cycling S1>S2

Greatest ΔPSI/cycle maintained near current collecting tabs as previously observed, despite gradient reversal

Corroborating pressure diagnostics with destructive physical analysis

Homogeneous pressure

Build-up of material occurs across anode, deformation apparent near current-collecting tabs and middle of stack

Corroborating pressure diagnostics with destructive physical analysis

Comparison between heterogeneous pressures

Anode degradation is exacerbated for cells experiencing heterogeneous pressure gradients and is worst in middle of stack

Corroborating pressure diagnostics with destructive physical analysis

Comparison between heterogeneous pressures

Anode degradation is exacerbated for cells experiencing heterogeneous pressure gradients and is worst in middle of stack

Conclusions and future directions

I. Conclusions

- 1. Heterogeneous compression results in greater decline to cell state of health
 - Apparent anode deformation occurs in cells with heterogeneous compression
- 2. Regardless of gradient direction, greatest $\Delta PSI/cycle$ evolves closest to current-collecting tabs
 - Compression nearest to current-collecting tabs ranks worst in performance
- II. Project status and future directions
 - 1. Isolation of cell quadrants near cathode tab (in progress), anode tab (complete), acquire chemical data on regions of interest in DPA cells (to be completed).

- 2. Simplify system of interest to pouch cells with fewer internal layers; localize pressure gradients with greater precision
- 3. Further non-destructive techniques to map internal properties of cells (acoustics, XCT)

Thank you!

Supporting slides

Properties of devices under test

• Modeling and real-time measurements of operating batteries have identified a heterogenous distribution of thermal and electrical properties across cells

Amps/cm²

₹ 2.84

Quantification of gradients

Linearity needs to improve, potentially with the use of more rigid plates and/or less compliant material

Extra slides

20