

Approved for Public Release: NG24-0555 © 2024 Northrop Grumman Systems Corporation

Scott Messenger

Senior Staff Space Survivability Physicist **Steven Witczak**

Jeff Warner

April 25, 2024

2024 Space Power Workshop

Motivation/Purpose

- AIAA S-111A & ECSS-E-ST-20-08C standards

- Ground Test Data Anomalies
- Prior Experience in Electron Transport @ NeoBeam Facility (2010)
- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - -TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

AIAA S-111A (2014) US Space PV Standard

Currently in revision

Table 2 — Electron energies and fluences*

- Section 8 addresses electron & proton ground testing to develop the necessary parametric degradation curves for EQFLUX/SCREAM applications
- Provides Tables of suggested energies/fluences for cell degradation properties

Energies (MeV)	Fluences (number of electrons per square centimeter)						Energies (keV)	Fluences (number of protons per square centimeter)				
.6	2x10 ¹³	2x10 ¹⁴	1x10 ¹⁵	2x10 ¹⁵	4x10 ¹⁵		20	3x10 ⁹	5x10 ⁹	1x10 ¹⁰	3x10 ¹⁰	1x10 ¹¹
1.0	3x10 ¹³	1x10 ¹⁴	5x10 ¹⁴	1x10 ¹⁵	3x10 ¹⁵	1x10 ¹⁶	50	3x10 ⁹	5x10 ⁹	1x10 ¹⁰	3x10 ¹⁰	1x10 ¹¹
5.0	4x10 ¹²	1x10 ¹³	4x10 ¹³	1x10 ¹⁴	4x10 ¹⁴		100	5x10 ⁹	1x10 ¹⁰	5x10 ¹⁰	1x10 ¹¹	3x10 ¹¹
*These energ	e energies and fluences are recommended except for the fluence of $\ge 1 \times 10^{16}$ 1 MeV electrons, which is							3x10 ⁹	1x10 ¹⁰	3x10 ¹⁰	5x10 ¹⁰	1x10 ¹¹
required.							1,000	5 x10 ¹⁰	2x10 ¹¹	5x10 ¹¹	2x10 ¹²	5x10 ¹²
							3,000	1x10 ¹¹	4x10 ¹¹	1x10 ¹²	4x10 ¹²	1x10 ¹³

Table 3 — Suggested proton energies

• Dosimetry stated to require calibrated Faraday cups ("shall" statement)

"The fluence **shall** be measured using a validated **Faraday cup** for dosimetry and if desired, supplemented by other methods. The dosimetry shall be accurate to at least ±10%."

ECSS-E-ST-20-08C (2012) EU Space PV Standard

- Recently revised in 2023
- Refers to ISO 23038 "Space systems Space solar sells Electron and proton irradiation test methods" for guidance in performing the tests
- Sections 7.5.13 & 7.5.14 addresses electron & proton ground testing, respectively
- Provides guidelines for beam energies & fluxes dependent on given mission
 - Electrons: **Only 1 MeV required** w/ flux < 5x10¹¹ e⁻/cm²/s
 - Protons: 2 energies required to confirm validity of 1 MeV electron data
- No explicit direction on beam dosimetry
 - Allows beam facility choice of method
 - ISO 23038 referral (contains some comments regarding Faraday cups no "shalls")

Motivation/Purpose

- AIAA S-111A & ECSS-E-ST-20-08C standards

– Ground Test Data Anomalies

- Prior Experience in Electron Transport @ NeoBeam Facility (2010)
- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

RADIATION TESTING AT SOLAERO TECHNOLOGIES

Data provided by SolAero by Rocket lab

High energy electron exposures

Facility A

*Dosimetry: Faraday cup w/ adjusted energies

RADIATION TESTING AT SOLAERO TECHNOLOGIES

Data provided by SolAero by Rocket lab

High energy electron exposures Facility A

*Dosimetry: Faraday cup w/ adjusted energies Facility B

*Dosimetry: Radiochromic films

RADIATION TESTING AT SOLAERO TECHNOLOGIES

Data provided by SolAero by Rocket lab

High energy electron exposures Facility A

*Dosimetry: Faraday cup w/ adjusted energies Facility B

*Dosimetry: Radiochromic films

Noted *linear dependence in fluence* exists

RADIATION TESTING AT SOLAERO TECHNOLOGIES

Data provided by SolAero by Rocket lab

High energy electron exposures Facility A

*Dosimetry: Faraday cup w/ adjusted energies Facility B

*Dosimetry: Radiochromic films *Scaled fluence to meet Facility A results

Noted *linear dependence in fluence* exists (20 to 25% difference)

*Similar differences exist for the other PV parameters

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
 - Ground Test Data Anomalies

Experience in Electron Transport @ NeoBeam Facility (2010)

- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

NeoBeam Experience (IEEE Trans. Nucl. Sci. 57, 3400 (2010)

NORTHROP GRUMMAN NeoBeam Experience (IEEE Trans. Nucl. Sci. 57, 3400 (2010)

NORTHROP GRUMMAN NeoBeam Experience (IEEE Trans. Nucl. Sci. 57, 3400 (2010)

- MCNP simulations found 2 competing mechanisms
 - Flux at sample location w.r.t. Faraday cup charge collection (increased DDD)

NeoBeam Experience (IEEE Trans. Nucl. Sci. 57, 3400 (2010)

- MCNP simulations found 2 competing mechanisms
- Energy deposited into DD due to electron beam degradation (deceased DDD)

DDD deposition Factors: Energy dependence & DDD deposition

5 MeV: 0.858 (3.57 MeV equivalent) 1 MeV: 0.838 (0.83 MeV equivalent) 600 keV: 0.528 (0.413 MeV equivalent)

NeoBeam Experience (IEEE Trans. Nucl. Sci. 57, 3400 (2010)

- MCNP simulations found 2 competing mechanisms
 - Flux at sample location w.r.t. Faraday cup charge collection (increased DDD)
 - Energy deposited into DD due to electron beam degradation (deceased DDD)

Beam Energy	Flux	Energy	Total	
600 keV	1.899	0.528	1.003	
1 MeV	1.482	0.838	1.242	
5 MeV	1.075	0.858	0.922	

Net 25% extra effect due to beam conditions/dosimetry techniques

IMPACT (2010)

*Increased awareness of beam geometry noted – need both Flux & DDD deposition

*MC simulations successfully used to explain discrepancies in experimental data and analyze other beam/source geometries

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
 - Ground Test Data Anomalies
- Prior Experience in Electron Transport @ NeoBeam Facility (2010)

Facility Descriptions

- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

Electron Radiation Facility A - Geometry

Dosimetry (Facility A)

- 1. Calibrated Faraday Cup (counts # charge particles/Coulombs)
 - a. Energy/fluence "corrected" for electron transport effects using Monte Carlo simulation code ITS (Integrated Tiger Series) – ETRAN
 - b. Faraday cup used to collect/integrate charge to drive beam current
- 2. Secondary dosimetry obtained using NISTcalibrated calorimeter
- 3. Energy calibrations using solid state detectors over a range of terminal energies

Corrected Energies 0.78 MeV (0.7 MeV equiv.) 1.077 MeV (1 MeV equiv.) 2.05 MeV (2 MeV equiv.)

Electron Radiation Facility B - Geometry

Dosimetry

- Calibrated radiochromic films (gets ionizing dose via optical absorption @ 510 nm)

 a. Far West Technologies (commercial)
 b. Electric current from aluminum plate used to determine beam current
- 2. FWT films had secondary calibrations using ⁶⁰Co gamma source
- 3. ⁶⁰Co gamma source calibrated using Fricke ionizing dosimeter
- Energy calibration via neutron-induced Ag activation (using ⁹Be(γ,n)⁸Be to get neutrons)

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
 - Ground Test Data Anomalies
- Prior Experience in Electron Transport @ NeoBeam Facility (2010)
- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

Energy Loss Rates (MeVcm²/g) – Ionizing vs Nonionizing

Energy Loss Rates (MeVcm²/g) – Ionizing vs Nonionizing

Energy Loss Rates (MeVcm²/g) – Ionizing vs Nonionizing

Energy Loss Rates (MeVcm²/g) – Ionizing vs Nonionizing

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
 - Ground Test Data Anomalies
- Prior Experience in Electron Transport @ NeoBeam Facility (2010)
- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

Electron Facility B (TID/DDD vs Distance from Window)

Notes: Peak energy decreases and develops spread as distance from source increases

Energy Loss Rates (MeVcm²/g) – Ionizing vs Nonionizing

RADIATION TESTING AT SOLAERO TECHNOLOGIES

Data provided by SolAero by Rocket lab

High energy electron exposures Facility A

*Dosimetry: Faraday cup w/ adjusted energies Facility B

*Dosimetry: Radiochromic films *Scaled fluence to meet Facility A results

1.25X higher flux means 25% lower fluence given to solar cells – OR 80% multiplier

*Similar differences exist for the other PV parameters

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
 - Ground Test Data Anomalies
- Prior Experience in Electron Transport @ NeoBeam Facility (2010)
- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

Summary

- MCNP6 has been used to determine the ionizing and non-ionizing dose profiles in an electron beam facility where electron transport through air occurs
- Results show that *ionizing dose-derived beam fluxes are ~25% higher* than its nonionizing counterpart
- Therefore, electron fluence (time-integrated flux) values are ~25% lower than expected
- These results are consistent with PV measurements from SolAero by Rocketlab on ZTJ+ & Z4J comparing 2 electron beam facilities
- Monte Carlo transport simulations can resolve noted discrepancies in experimental data and drive future ground testing protocols & standards
- To be introduced into latest AIAA S-111A revision (in process)
- Paper accepted as an oral presentation to the 2024 NSREC (Ottawa, CA)

- Motivation/Purpose
 - AIAA S-111A & ECSS-E-ST-20-08C standards
 - Ground Test Data Anomalies
- Prior Experience in Electron Transport @ NeoBeam (2010 NSREC publication)
- Facility Descriptions
- Ionizing vs. Nonionizing Energy Deposition
 - Stopping power (dE/dx) vs NIEL
 - Effect of threshold energy on NIEL
- MCNP6 Transport Results
 - TID vs DDD deposition
 - Derived fluences for ground testing
- Summary
- Path Forward

Path Forward

- Need to re-evaluate dosimetry methods for solar cell radiation effects
 - Solar cell "control cells"
 - Are our current (pun intended) data reliable?
 - Faraday cups
 - Do they also suffer from counting non-relevant energies?
 - MC Simulations on electron/proton beam geometries
 - Air, vacuum, rastered, divergent
- Other nonionizing dosimetry methods
 - Gain degradation in 2N2222A bipolar transistors ASTM E1855 (used for neutrons)
 - Light output degradation in GaAs LEDs (OSL sensor IEEE TNS 58, 939 (2011))
 - Dark IV degradation in GaAs diodes (R2D3 IEEE TNS 62, 2995 (2016) & IEEE TNS 66, 290 (2018))
 - Dark IV degradation in Si planar p-i-n diodes (many papers)
 - Si CCD degradation (?)
- Monte Carlo transport simulations can resolve noted discrepancies in experimental data and drive future ground testing protocols & standards

Approved for Public Release: NG24-0555 © 2024 Northrop Grumman Systems Corporation