

Analysis of Glint During the Artemis I Mission

Space Power Workshop Torrance, CA April 23, 2024

-

Alex Jurcago John Carroll University ajurcago25@jcu.edu

MA

K-T

Spencer Furin NASA Glenn Research Center spencer.c.furin@nasa.gov

E

m.

Ed Lewandowski, PhD NASA Glenn Research Center edward.j.lewandowski@nasa.gov

2

What is Glint?

Reflection of light off a specular surface

• Shiny/mirror-like

Glint in the context of spacecraft

- Glint visible to external observers
- Glint back onto itself or another spacecraft

Potential consequences

- Increased current and heat
- Interfering with crew's view
- Interfering with star tracking or other components

Orion spacecraft is susceptible to glint

• Reflective aluminized tape covering crew module

Glint Test on Artemis I

Concern that glint could cause excessive solar array current generation

· Cleared with analysis years before flight

Flight test added to study glint during Artemis I

- · Goal of anchoring models with flight data
- Model predicted that attitude/array positions already planned for visual inspection procedure would produce measurable glint without exceeding hardware limits
- Performed during both outbound and return legs

Glint effects clearly visible in current telemetry

- Localized flux led to significant increase in current on one to two circuits compared to neighboring circuits
- · Location of glint moved along wing during maneuver

Vehicle attitude during DFTO

Analysis Method

Inputs taken from telemetry

- Sun vector, sun-spacecraft distance, solar array gimbal positions \rightarrow thermal model
- Operating voltage, section shunt status \rightarrow electrical model
- Monte-Carlo ray tracing for radiation performed by RadCAD
 - Optical properties of each node on model defined for solar spectrum
 - Calculates incident flux per solar cell, passed to electrical model

Solar array model

- Based on spacecraft power system model developed and used at NASA Glenn Research Center
- Generates IV curve for each cell, composites into strings and circuits
- Current extracted from composite circuit curve based on operating voltage

Glint Model Sensitivity Testing

- Glint is a multi-disciplinary problem
- Need to understand what factors are/are not important when applying to new spacecraft models

Multiple contributing factors were studied

- · Case matrix established to test these variables
- Parameters of the system
 - Model geometry
 - Sun vector
 - · Off-point angle: angle between longitudinal axis and sun vector
 - · Roll angle: azimuth of sun vector around longitudinal axis
 - Solar array inner gimbal angles
 - · Crew module optical properties
 - Specularity the probability of a light ray to directly reflect off a node
 - If light ray is not absorbed or reflected specularly, it reflects diffusely in a random direction
 - · Absorptivity the probability of a light ray to be absorbed by a node

RadCAD reflection method

Geometry Sensitivity

- Model changes had to be made for simulated data to match in-flight glint pattern
 - Added detail to the crew module surface nodes to account for large untaped areas
 - Slightly shifted some geometric features

Changes as small as a few cm drastically change glint-generated current

Before Model Geometry Changes

After Model Geometry Changes

Sun Vector Roll Angle Sensitivity

Little variation in current across a $\pm 10^{\circ}$ range

Sun Vector Off-point Angle Sensitivity

Significant variation in glinted current from 0-1.75°

Solar Array Inner Gimbal Angle Sensitivity

All sections impacted the same, regardless of glint

Optical Property Sensitivity

Results are more sensitive to specularity than absorptivity, but results were inconsistent Optical properties may have changed over several weeks between two tests Trend suggests specularity is <1 (worst-case prior assumption)

13

Conclusions

- Glint can significantly impact current generation for a solar powered spacecraft
 - Important to model correctly to avoid inadvertent hardware damage
 - Observed >50% current increase in glinted sections
 - Risk from glint must be considered and analyzed when adding specular surfaces to a spacecraft
- Artemis I flight test data shows model predictions were conservative
 - · Earlier worst-case analysis is bounding
- Sensitivity testing revealed parameters that most impact the modeling of glinted current
 - Sensitive to error in:
 - Spacecraft surface geometric features and details
 - Off-point angle component of the sun vector
 - Less sensitive to error in:
 - Solar array position
 - Optical properties of surface

Future Analysis

- Continue preflight glint analysis on future Artemis missions
 - Model the effects of glint interaction between different spacecraft
 - Orion docking to other vehicles
- Conduct a more in-depth study of the effects of sun vector on glint
 - Uncertainty measurement in sun vector telemetry (including tolerance)
- Study reflection of light off cover glass of cells
 - Lights up crew module adapter in flight images

Acknowledgements

- Erik Stalcup
- Tim Roach
- Sharon Miller
- NASA Glenn Research Center
- Artemis I mission team from NASA, Lockheed Martin, ESA, and Airbus
- OSTEM Internship program

