

2024 Space Power Workshop April 23-25, 2024

LEO Cycling Performance of Lithium-Ion Batteries with Carbon Nanomaterials

Elena Bekyarova, Ph. D.

Carbon Solutions Inc.

bekyarova@carbonsolution.com

© 2024 by Carbon Solutions Inc. Published by The Aerospace Corporation with permission

Renewable Energy

Energy Storage – The Fastest Growing Market

- The most innovative period for energy storage technologies
- Tremendous scaling rates
- Increased demand for reliable domestic supply chain
- Li-ion technologies will continue to dominate the growing market

Challenges in Li Ion Batteries

Energy Environ. Sci., 2012,5, 7854-7863

How to move closer to theoretical values?

· Innovations in materials and battery manufacturing

CSI Battery Technologies

- ✓ Novel Materials, Chemistry and Design
- ✓ Tailored Anodes, Cathodes & Membranes for Enhanced Operation Parameters

Power Cells Fast Discharge, Fast Charge very high current delivered in minutes S CEL **Energy Cells** High Current high current at reduced weight R BATTE Pulse Cells Low Resistance very high current at high frequency (10–100 Hz) ភ High-Voltage Cells Operating Voltage 5 V Ö dramatic weight reduction for cells in series connections Long Cycle Life Cells > 5,000 cycles remote operation, reduced maintenance, increased range

CSI Power Cells vs Commercial Battery

- Fast operation charge and discharge
- High energy combined with high power
- Reduced weight by 30-50%
- Conformal cell configuration
- Safe operation (no fire, explosion, corrosion)

High Current Applications

- > High-conductivity materials with fast charge transfer and low resistance
- Ultrafast Li diffusion
- Chemically modified electrodes for improved surface electrochemistry during charge/discharge

CSI Energy Cells & High-Voltage Cells

New Structures: Holey Graphene for Fast Ion Transport

Lin, Y. et. al., Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. *Advanced Functional Materials* **2016**, *25* (19), 2920-2927.

Liangbing Hu, University of Maryland

Novel Materials and Chemistry for Anode

Graphene with Nanosize Holes

Hybrid Graphene - Carbon Nanotubes

Capacity of Graphene Materials

Chemical Modification

Carbon Nanomaterials and Novel Design for Cathode

Cathode Nanoparticles Embedded in CNTs

- Improved electrical conductivity
- Better mechanical stability
- Faster Li ion diffusion

Batteries for Space Applications

- □ Critical role in satellite operation
- Low-earth orbit (LEO) satellites:
 batteries supply power during eclipse

Interplay between Specific Energy and Cycle Life

Space batteries requirements:

- High energy density
- Lifetime: 5,000 cycles per year
 - Charge and discharge rates: LEO satellites circle the earth in 90 minutes; eclipsed for 35 minutes
 - Depth of Discharge (DOD): limited to low levels to reduce stress

Current LIB Parameters:
Energy density ~ 250 Wh/kg
Cycle life ~ 300 - 4,000
Charging time 1-10 h

Desired LIB Parameters:
Energy density >350 Wh/kg
Cycle life > 5,000
Charge time - 30 minutes

Advanced battery developmentModernization objectives

LEO Cycling Tests

- ➤ Temperature: 25 °C
- ➢ Rate: C/2.25
- Constant Current Charge to 4.4 V; Constant Voltage Charge
- ➢ DOD − 40%
- ➢ Cut-off Voltage 2.8 V
- > Stop for characterization every 200, 300, 500, 1000 cycles

Characterization Tests Capacity C and Direct Current Resistance (DCR) Measurement

BSR/ANSI/AIAA S-144-2019 "Qualification and Acceptance Tests for Commoditized Space Battery Cells"

13

LEO Cycling Stability of Graphene Batteries

Literature data for cycling stability of LIB Cathodes

Specification sheet parameter	NCA [23]	NMC [24]	LFP [25]
Low voltage limit (V)	2.5	2.75	2.0
High voltage limit (V)	4.2	4.2	3.6
Nominal voltage (V)	3.6	3.6	3.3
Max continuous discharge (C rate)	2.0	2.0	27.3
Max continuous charge current (C rate)	0.5	1.0	3.6
Discharge temperature range ("C)	-20 to +60	-20 to +60	-30 to +55
Charge temperature range ("C)	0 to +45	0 to +45	0 to +55
Cycle Life to 80% capacity	250	300	4000

Single cell 18-65 cylindrical NCA, NMC and LFP datasheet specifications

Journal of Energy Storage 31 (2020) 101561

Summary

- Graphene and carbon nanotubes play important role in both anode (as the main active materials) and cathode (as additives)
- Tailored chemical modification and structure engineering of the carbon nanomaterials are powerful tools for the design of batteries with fast charge transfer, low resistance and improved surface electrochemistry
- Graphene affords cells with high specific energy > 350 Wh/kg and high Coulombic efficiency
- Demonstrated graphene batteries with 3,000 LEO cycles at 40% DOD

CSI Facilities & Equipment

Capabilities

- Carbon nanomaterials production
- Functionalization & modification for battery applications
- Processing of battery materials, slurry formulations
- Coating and conditioning of electrodes: custom designed anodes and cathodes
- Preparation of battery membranes and electrolyte formulations - gels and solid-state
- Battery cells' fabrication coin and pouch
- Battery design and optimization to customer requirements
- Battery tests and analysis

Battery Development and Testing Facilities

SBIR/STTR Projects

1. Air Force Office Research Laboratory, Phase I and Phase II " Development of Graphene Batteries for Use in Space Applications" 2021 – 2024. Program Manager: Alec Jackson

2. Air Force Office of Scientific Research (AFOSR) in partnership with AFWERX, Phase I " Development of Graphene Batteries for Use in Aviation Applications"; 2020 – 2021. Program Manager: Jared Evans

3. ARMY - AMRDEC, Phase I, Phase II and Phase II Enhancement "All-Solid-State Battery-Ultracapacitor Hybrid Devices Based on Nanostructured Materials"; 2013- 2021. Program Manager: Dr. Mohan Sanghadasa

Acknowledgement

Carbon Solutions Inc.

Dr. Mikhail E Itkis Sergey Kalinin Nelson Cabrera

US Air Force (AFRL/RVS) Small Business Innovation Research (SBIR) TPOC Alec Jackson