

WHO WE ARE

DHV Technology is a Spain based international company that **designs and manufactures solar panels and other power subsystems for space applications**

DHV Technology supplies solar panels and fully customized solutions for the main international companies in the space sector.

Our facilities, with a total of **3700 m²**, consist of:

- + 1200 m² clean room
- + 1000 m² offices
- + 1500 m² warehouse and others

Results on Solar Array Technology Qualification for LEO SmallSat Missions using semi-automated processes

23-25th April 2024

DHV Technology | Space Power Workshop. April 23-25, 2024. Torrance, CA.

WHAT WE DO

- Designing customized products
- Constellation projects manufacturing
- Solar panels for SmallSats and CubeSats
 - Deployable solutions

POWER SOLUTIONS FOR CUBESATS

POWER SOLUTIONS FOR SMALLSATS

HERITAGE

250+ PROJECTS CARRIED OUT

3000+

ACCUMULATED DAYS IN ORBIT

200+ SATELLITES FLYING WITH OUR SOLUTIONS

DHV Technology | Space Power Workshop. April 23-25, 2024. Torrance, CA.

SOLAR PANELS

Why are we carrying out this project?

BACKGROUND

- 1. Welding and automation \rightarrow Not enough information in life tests
- 2. Adhesion and encapsulant process \rightarrow More RTV references to be tested
- 3. Electrical components \rightarrow Increase possibilities to find reliable COTS
- 4. Thermal cycling tests already performed for 5 years in LEO (2013-2022)

In the meantime, discovering things from 2022 up to now...

- 1. CFRP substrates (plies, inserts, Titanium snubbers)
- 2. New silicone adhesives and encapsulants
- 3. Demonstrate survivability for more than 5 years in LEO
- 4. Standard Solar Array wing (substrates, hinges, springs)

SOLAR PANELS

Typical construction

Multi-junction cells with 30% nominal efficiency and integrated bypass diodes

Laydown design

Design the most efficient configuration to provide the maximum power

ATOX protection for LEO

Welded connections protected with silicone.

Space qualified CFRP substrates

Customized substrate with different configurations

SOLAR PANELS

Mechanisms design

Customized hinges are designed with different opening angles, configurable torsion springs, and latching systems.

SOLAR PANELS Deployables

Deployment mechanism integration HDRM integration and customized yoke design

Inserts integration Additional integration of inserts for wiring and protection covers

Electrical wiring Space-qualified cables in compliance with ESCC standards.

Three configurations for PVA. A fourth one to test additional items

DVT-1

DVT-2

DVT-3 DVT-4

DHV Technology | Space Power Workshop. April 23-25, 2024. Torrance, CA.

Three configurations for PVA and mechanical elements. A fourth one to test additional items

DVT-1 DVT-2 DVT-3 DVT-4

Product Tree: Materials, process and components

Severo Ochoa 13 – 29590 Malaga (SPAIN)

Product Tree: Materials, process and components

Product Tree: Materials, process and components

Test sequence

DVT Coupons in the way to reach thousands of thermal cycles:

Sequence:

- Bakeout 24h at +125°C
- TVAC 10 cycles, -142°C to +135°C
- APTC 11,105 cycles, **-120°C to +125°C**
- TVAC 10 cycles, -142°C to +157°C

Test sequence schedule

Block	Temp. [°C]	Cycles	Completion date/ estimated
Bake-Out + TVAC	-142, +135	10	Mar. 2023
Block 6: LEO 100 Cycles	-120, +125	115	May. 2023
Block 7: LEO 1,000 Cycles	-120, +125	1,115	Sep. 2023
Block 8.1: LEO 900 Cycles	-120, +125	2,015	Jan. 2024
Blocks 8.2 – 8.11: LEO 9,100 Cycles	-120, +125	11,115	Sep. 2024
Block 11: TVAC 10 Cycles	-142, +157	11,125	Oct. 2024

ihv

So far, so good:

- RTV-(2), a novel one (automated dosing)
- Novel priming method
- Automated cell string welding
- Solar Cells not damaged when placed over a substrate patch
- CFRP substrate layup and materials
- **Titanium snubbers & Aluminium Inserts**
- All EEE components except one bleed resistor
- Electrical Performance shows no power loss (less than 2%)

Performance opened to improvements:

- Film adhesive Solar Cells bonding \rightarrow Cells broken but maintain strong adhesion
- Fast UV Curing adhesive \rightarrow Detached all glue dots
- Cracks in conductive Adhesive \rightarrow Grounding signal poor
- Bleed Resistor \rightarrow Component failure
- Possible delamination in one aluminum insert \rightarrow Under investigation

DVT coupons

Results

Factory automation Solar cells inspection and welding

- Identification of defects and electroluminescence testing.
 Current capacity: 200,000 cells per year. Four different cell types.
- Automated Welding: 117,000 cells/ year current capacity.
 198,000 cells/year. Improvement with two welding heads
 270,000 cells/year. Improvement with three welding heads

Plans, most of them in 2024:

- ESD test qualification campaign in progress.
- New robust solar cells bonding process qualified.
- Commissioning automated cell welding process: increasing capacity and reliability.
- Automatic bonding cells process based on automated Pick&Place process • (in progress, forecast Q1 2025)
- Targeted 30,000 thermal cycles in DVTs, five years in LEO,
- Reviewing performances, new materials, and processes.
- Thermal cycling campaign for GEO missions is almost finished.
- New in-house environmental testing capabilities: TVAC and APTC chamber.

DHV Technology www.dhvtechnology.com

CONTACT

Ismael Sánchez (Head of Product Development) i.sanchez@dhvtechnology.com Vicente Díaz (Managing Director & Co-Founder) v.diaz@dhvtechnology.com

C/ Severo Ochoa 13 Tech Park of Andalusia 29590 Malaga (SPAIN)

