

Fission Surface Power Project

Lindsay Kaldon Project Manager

Andy Presby Deputy Project Manager

NASA Glenn Research Center

Space Power Workshop Torrance, CA 23-25 April 2024

NASA

• Moon:

- Lunar night can be up to 14.5 Earth days long
- Lunar night temperatures ~ 50K to 100K, depending on location
- Lunar permanently shadowed regions (PSR) may contain water ice and are of great interest to explorers
- Mars:
 - Mars insolation on average 43% of that at Earth orbit
 - Mars has recurring planet-wide dust storms that can last for weeks or months and drastically reduce solar energy-to-ground

PSR

Martian dust storm global coverage

Opportunity – before and after Mars dust

Surface Power Generation Options

- Space power options:
 - Solar + Batteries (chemical)
 - Fuel Cells (chemical)
 - Nuclear
 - RTG
 - Fission

- Solar is typically chosen and for good reasons:
 - Technical Maturity
 - Experience Base
 - Cost

Graphs after Angelo and Buden, Space Nuclear Power, Krieger, Melbourne, Fl., USA, 1985.

Solar + Batteries

- Battery mass can be a challenge during lengthy periods in shadow
- International Space Station (ISS) example:
 - ISS eclipses are ~ 35 min long
 - Requiring 24 li-ion batteries at 10,440 lbs (4,735kg) total
- Now scale that to a Lunar night ~2 weeks long:
 - Battery system masses ~7,000,000 lbs (3,200,000 kg)
- (see "Passive Survival of the Lunar Night with Cryogenically-Operable Electronics" presentation – Thursday afternoon)

ISS solar array configuration

That's 197 kg of battery ... for just

Fuel Cells

Fuel Cells SOA

Application Power Requirements

- Lunar / Mars Landers: ~ 2 kW to ≤ 10 kW (TRL 3 for Solid Oxide, TRL 5/6 for PEM)
- Lunar / Mars surface systems: ~ 2 kW to ≤ 10 kW modules (TRL 3 for Solid Oxide, TRL 5/6 for PEM)

Electrolysis SOA

- Low Pressure (< 0.3 MPa, < 45 psia) (TRL 9, ISS Oxygen Generator Assembly flying ~ 20 years)
- Medium Pressure (<1.7 MPa, < 250 psia) (TRL 5 for PEM, no Solid oxide development)
- High Pressure (> 10 MPa, > 1,500 psia) (TRL 3 / 4 for PEM, no Solid oxide development)
- Contaminated Water Sources for ISRU (TRL 3 for PEM, TRL 3 / 4 for Solid oxide)

Why Nuclear?

<u>Energy Density:</u> Liquid oxygen/hydrogen = 1.35 x 10⁷ J/kg

Why Nuclear?

<u>Energy Density:</u> Liquid oxygen/hydrogen = 1.35 x 10⁷ J/kg

Uranium-235 fission = $8.2 \times 10^{13} \text{ J/kg}$

Radioisotope Thermoelectric Generator (RTG)

- Plutonium-238 decay produces heat
- One side of thermocouple sees the heat production, other side is space or planetary environment
- Excess heat used to maintain spacecraft
- operating temps
 Some famous RTGs and multi-mission RTGs: Pioneer, Voyager, Galileo, Cassini, New Horizons, Viking, Curiosity, Perseverance
 Multi mission RTG – 110W freshly fueled
 Generally, scales well from watts to a kilowatt+
 Dynamic power conversion under development for RTGs

Voyagers

Perseverance

Cassini

Fission

- Produces heat from the splitting of uranium atoms
- Heat transported to a converter
- Converted to electricity statically or dynamically
- Generally scales well from kilowatts to megawatts+
- First flight space reactor Systems for Nuclear Auxiliary Power (SNAP) 10A 1965 (thermoelectric)
- Ground based demo Kilopower Reactor Using Stirling Technology (KRUSTY) 2018 (Stirling)

KRUSTY

SNAP-10A

Fission Surface Power System Phase 1 Overview

- NASA is working with the Department of Energy and their federally funded laboratories to establish a lunar Fission Surface Power (FSP) system that is directly applicable to Moon and Mars exploration
- This hardware development is part of NASA Space Technology Mission Directorate's (STMD) Technology Demonstration Missions (TDM) Program
- Requirements for design studies only...may change for flight
- Autonomous nuclear power system:
 - Launched, placed on the Moon's surface by a lander,
 - Transported to its operational location,
 - · Connected to a user power interface up to a kilometer away
- 10 year life
 - Consisting of a 1-year demonstration followed by
 - Operational support to Moon surface exploration missions
- Designed to be extensible to Mars surface missions

Key Design Characteristics

- 40 kWe output at 120 Vdc
- Fits on a lander
- Operate on the lander, or be transported
- 10-year life

Fission Surface Power System Development Strategy

- Awarded three Phase 1 FSP System Design Contracts
- Completed government reference design work
- Government Technology Maturation underway
 - Department of Energy (DOE) working on metal hydride moderators, shielding and instrumentation and controls
 - NASA/DOE FSP Team holding periodic webinars for industry and other government agencies
 - NASA non-nuclear power management and distribution development, thermal, and power conversion work underway
- Phase 2
 - Will be a separate, open and competitive procurement for qualification and flight unit

Notional Future Fission Power and Propulsion Systems

- NASA intends to develop and fly a family of complementary surface power technologies
- NASA is working with the Department of Energy and their federally funded laboratories to establish a lunar fission surface power system that is directly applicable for Moon and Mars
- NASA-GRC technology investments are targeting key non-nuclear systems needs, including power conversion solutions, radiation hardening of electronics, and power distribution capabilities critical to nuclear systems
- NASA will continue to be closely engaged with industry, academia, and other external stakeholders to seek innovative, unique designs for fission surface power systems

Questions?

Thank You!