

2023 Space Power Workshop April 25-27, 2023

Effect of Anode Prelithiation on LEO Cycling Life of Graphene Batteries

Elena Bekyarova, Ph. D.

Carbon Solutions Inc.

bekyarova@carbonsolution.com

© 2023 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2023-1481

Batteries for Space Applications

Low-earth orbit (LEO) satellites: batteries supply power during eclipse

Space batteries requirements: □ High energy density Charge and discharge rates: LEO satellites circle the earth in 90 minutes; eclipsed for 35 minutes □ *Lifetime:* 5,000 cycles per year □ Depth of Discharge (DOD): limited to low levels to reduce stress □ *Weight*: typically 10 to 20% of the overall mass

Benefits of Graphene

□Graphite is the main anode material in LIBs □Graphene has 2X the capacity of graphite

Anode	Capacity, mAh/g
Graphite (LiC ₆)	372
Graphene (LiC ₃)	744

Graphene Benefits

Specific capacity ~ 1264 mAh g⁻¹
Record in-plane chemical diffusion coefficients for Li at room temperature 7 × 10⁻⁵ cm² s⁻¹ vs. 10⁻⁷–10⁻⁶ cm² s⁻¹ in graphite

Graphene

Technical Challenges

- Graphene re-stacks during electrode preparation
- Irreversible Li insertion, capacity loss with cycling
- Dendrite growth

Graphene Materials for Next Generation LIBs

Prelithiation of Graphene Anodes

LIBs Operation

Electrochemical Prelithiation

- Compensates initial capacity loss
- □ Raises working voltage
- □ Decreases electrolyte consumption

Role of Electrolyte in Prelithiation Process

Solid Electrolyte Interface (SEI)

- Cyclability of the anodes is affected by the structure and composition of the formed SEI
- Electrolyte determines the formed SEI

Electrolyte Compositions for Graphene Batteries

Reduction order: EC > DMC > VC > FEC > EMC > DEC

Goodenough and Kim, J. Power Sources 2011, 196, 6688. Delp et al., Electrochimica Acta 2016, 209, 498.

Electrolyte Compositions for Graphene Batteries

Electrolyte	Litfsi	Vinylene (%)	Li salt (%)	FEC (%)
1				
2	1 M			
3	1 M	5%		
4	1 M	5%	5%	
5	1 M	5%	10%	
6	1 M	5%	10%	5%

Pouch Cells with Prelithiated Graphene Anodes

Effect of Electrolyte on LEO Cycling at 40% DoD

Effect of Electrolyte on LEO Cycling of Graphene Batteries

Effect of Electrolyte on LEO Cycling of Graphene Batteries

2,000 cycles p1191

Effect of Electrolyte on LEO Cycling Stability

Electrolyte	LiTFSI	Vinylene (VC) %	Li salt %	FEC %	Cells	LEO Cycles	Cycling Stability
1					p1134	189	
2	1 M				p1163	245	
3	1 M	5%			p1168	765	
4	1 M	5%	5%		p1188	1585	
5	1 M	5%	10%		p1191	2000+	
6	1 M	5%	10%	5%	p1204	1500+	

Li salt in combination of additives such as VC and FEC form stable SEI increasing the cycling stability of the graphene-based anodes.

Summary

- Graphene-based batteries with high energy density > 350 Wh/kg and Coulombic efficiency of > 95% using prelithiated graphene anodes
- The composition of the electrolyte plays critical role in the stability of the battery cycling performance
- A combination of Li salts and carbonate additives can be used to form a high-performance stable SEI and regenerate the prelithiated graphene surface during LEO cycling
- The graphene batteries have stable performance for more than 2000 cycles at 40% DOD with capacity retention of 100 % and stable resistance

Acknowledgement

This work was supported by the US Air Force (AFRL/RVS) Small Business Innovation Research (SBIR) program under contract FA9453-22-CA-117 TPOC Alec Jackson