Rad hard P-channel FETs: a simpler & more reliable solution for space PMAD designs

Oscar Mansilla, Rushi Patel & Michelle Lozada April 2023

Representing IR HiRel, an Infineon Technologies company

Oscar Mansilla

oscar.mansilla@infineon.com Product Marketing Director, Space

MOSFETs are critical to PMAD reliability

- Overall system reliability remains crucial in space applications.
 - This is especially true for the power management and distribution (PMAD) needed to keep spacecraft operational
- > With space systems only as capable as their weakest parts, reliability starts at the discrete component level
 - This includes power MOSFETs used in power converter, power stages and power distribution

Latest generation rad hard power solutions improve system efficiency

SOA improvements increase power capability by 250%

IR HiRel's R9 P-channel MOSFETs expand the envelope for DC safe operating area when compared with the company's legacy R5 devices. Three voltage classes of R9 and R5 MOSFETs are compared here.

 \rightarrow

R9 60 V P-channel devices have 3x higher current capability

Comparing the SOA of an R5 60 V P-channel MOSFET (IRHYS597034CM on left) with that of an R9 60 V P-channel MOSFET (IRHYS9A97034CM on right). The R9 device has 250% higher current capability.

Simplify gate driving with P-channel FETs

Simplified gate driving with P-channel (right) versus N-channel MOSFETs in a load sequencing circuit (left).

Save time and board space with P-channel devices

IRHYS9A97034EVAL1 <u>1</u> OUT Q1 Ŧ IN IRHYS9A97034CM 0 А D ÷ Q2 ÷ E IRHLUB770Z4 \sim --=

Typical inrush current limiter implementation

Inrush current limiter evaluation board using the IRHYS9A97034CM and IRHLUB770Z4

High side implementation	Benefits	Tradeoffs
N-channel	Lower R _{DS(ON)}	More complex design Larger board footprint Higher system cost
Latest gen R9 P-channel with improved FoM, SOA and R _{DS(ON)}	Simplified design Higher efficiency, reliability Board space savings Lower system cost	Higher R _{DS(ON)}

R9 devices support higher power dissipation in linear mode

R9 rad hard MOSFET technology platform

- > Improved SEE radiation performance
- > Increase power density and higher efficiency
- > Drop-in replacement for existing MOSFET
- Smaller footprint and lower mass with innovative packaging

N-channel platform			P-channel platform					
Size \ Volt	60V	100V	250V	Size \ Volt	60V	100V	200V	
6	\checkmark	\checkmark	\checkmark	6	\checkmark	\checkmark	\checkmark	
3	\checkmark	\checkmark	\checkmark	3	\checkmark	\checkmark	\checkmark	
1.7	\checkmark	\checkmark	\checkmark	✓ fully released				
1	\checkmark	\checkmark	\checkmark	✓ development				

Features

- > Increased I_D capability
- > Lower R_{DS(on)}
- TID levels 100krad and 300krad
- > SEE tolerant to LET 90 MeV·cm²/mg
- > Best Figure of Merit (FoM = $R_{DS(ON)}^* Q_G$)

Enable higher power density and higher reliability of power distribution

 Latest generation rad hard P-channel devices deliver higher current capability and can support higher current in linear mode applications

> They also offer simplified board design, higher reliability for space PMAD systems

- System designers can forego larger die sizes or packages, and device paralleling, saving solution size and weight
- With improved figure of merit (FoM), electrical linear mode and SEE Safe Operating Area, new R9 P-channel FETs enable higher power density and higher reliability of power distribution circuits in space power systems

Oscar Mansilla

oscar.mansilla@infineon.com Product Marketing Director, Space +1 480 627 5828

www.infineon.com/r9

An Infineon Technologies Company