

Life and Performance of GS Yuasa's Generation 4 Lithium-ion Chemistry for Space Applications

2023 Space Power Workshop

April 25-27, 2023

Curtis Aldrich, George Bergmark, Tom Pusateri - GYLP Go Honda, Yui Sakamoto, Masazumi Segawa - GYT

GS Yuasa Company Overview

GS (Japan Storage Battery)

Inventor's spirit contribute to society by developing high quality products

Storage Battery Co., Ltd. Genzo Shimadzu

2004

Corporate

Merger

Ushering in a new EV era

Supply of lithium-ion batteries for the i-MiEV, the world's first massproduced EV

Supply of lithium-ion batteries for PHEVs to Mitsubishi Motors Corporation

Mitsubishi Motors "Eclipse Cross PHEV"

Honda "FIT HYBRID"

Contributing to electrification of Japanese automakers

Supply of lithium-ion batteries for HEVs to Honda Motor Co., Ltd.

TOYOTA "Harrier"

Supply of lithium-ion batteries for **HEVs to Toyota Motor Corporation**

Contributing to the steady supply of electric power and the development of public infrastructure

Manufacture of large-capacity storage batteries for auxiliary power

Contributing to the promotion of clean energy

Development of renewable energy

storage systems

Support safety from deep sea to

Contributing to the realization of decarbonized society

Delivery of a world-class storage battery facility for wind power generation

Forthe next 100 years

Supporting the development of aircrafts

Receiving orders of lithium-ion battery system for Boeing 787 in the U.S.

©JAXA/NASA

2010s Installation of lithium-ion batteries on the International Space Station

Mass production of Japan's first lithium-ion batteries for submarines

Challenging spirit develop new businesses ahead of

Founder of Yuasa Storage Battery Co., Ltd. Shichizaemon Yuasa

YUASA (Yuasa Corporation)

Contributing to the development of the automotive industry

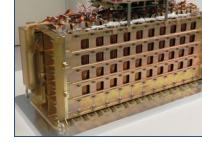
1910s

Manufacture of automotive lead-acid batteries

GS Yuasa Aerospace and Specialty Battery Groups

GS Yuasa Technology Ltd. "GYT"

- Research, development, manufacturing, test, and sales of specialty cells and batteries for:
 - Aerospace
 - Undersea
 - Defense and Security
- ISO9001 & JISQ9100 certified
- Headquarters and located in Kyoto, Japan



GS Yuasa Lithium Power, Inc. "GYLP"

- Primary channel for GS Yuasa Li-ion energy storage technologies and solutions for North American aerospace and defense applications.
- Engineering, sales, service, manufacturing, program management, logistics and export compliance
- ISO9001 & AS9100 certified
- Incorporated in the state of Georgia, US Company

RECIPROCAL DEFENSE PROCUREMENT MOU

June 2016, extended through June 2031

GS Yuasa LSE Li-ion Cell for Space Overview

GS Yuasa Space Flight Heritage Update

GS Yuasa is a world leader in Li-ion energy storage for space vehicles

 Number of satellites
 234+

 - LEO/MEO
 108+

 - GEO
 124

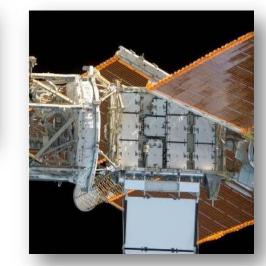
Interplanetary......

1st satellite on-orbit...... Servis 1 (30 Oct. 2003)

Li-ion Watt-hours flown in space....... >4.69 MWh (world leader)

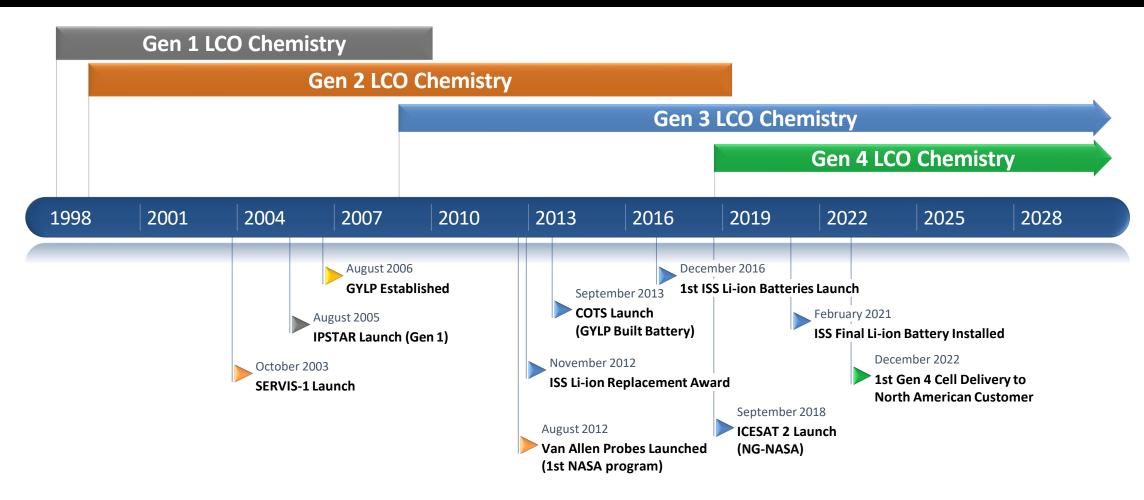
Cell-hours flown in space......>573 million hours

Space cell qualification programs...... >27


134; 145; 175; 190; 200

Backlog (Wh)......>1.20 MWh

Launch vehicles & number of satellites


Ariane-5ECA	51	Soyuz-STB Fregat-MT	17	Epsilon	6
Falcon 9	27	Antares 120, 230, 230+	15	Zenit-3	5
H-2A-20x	28	H-2B-304	13	Others	10
Proton-M Briz-M	29	Atlas 5 (401)	7		
Soyuz	27	Atlas 5 (421,431,551)	6		

Metrics updated February 2023

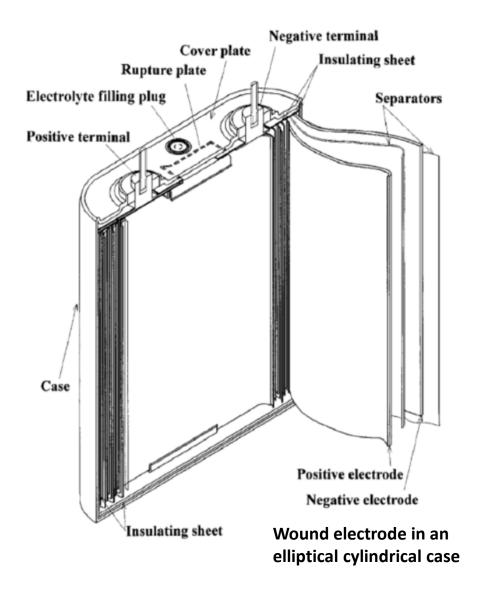
Timeline of GS Yuasa Space Chemistry

GS Yuasa has demonstrated the ability to maintain configuration and control over the material sources for 15+years thanks to strong relationship with the suppliers of the materials.

Generation 4 LCO/Graphite Space Cell

- Generation 4 Cells (2019) Improvements to Generation 3 LCO/Graphite chemistry increase energy density while maintaining superb
 capacity retention and suppression of DCR growth.
 - → Energy and Power optimized electrode optimizations will be available.

	160 Ah	145 Ah
	Generation 4	4 Generation 3
Dimensions	H 263*	H 263*
/ mm	W 130	W 130
	T 50	T 50
EoCV / V	4.10	4.10
Capacity / Ah		
(Rated)	160	145
(Actual)	178	161
Discharge	3.72	3.70
Voltage / V		
Mass / kg	3.69	3.55
Specific energy	180	168
/ Wh/kg		*Excluding terminal stu


ETS-9 (JAXA)

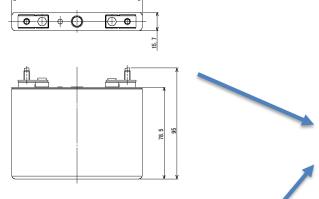
Minimum Design Changes Since 1999; Enhancements Only

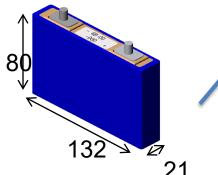
LSE Cell Basic Shape

Over 25 years of outstanding performance

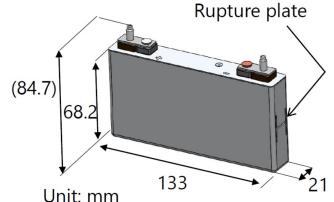
The LSE cell portfolio consists of various sizes of Li-ion cells. All cells share the same primary features: Al-case, wound-prismatic construction, ceramic terminals, LCO chemistry. All are manufactured in Kyoto, Japan on the same equipment and using the same basic processes. The portfolio can be viewed as a single fundamental cell technology, configurable in height, width and thickness.

LSE12x Cell Case

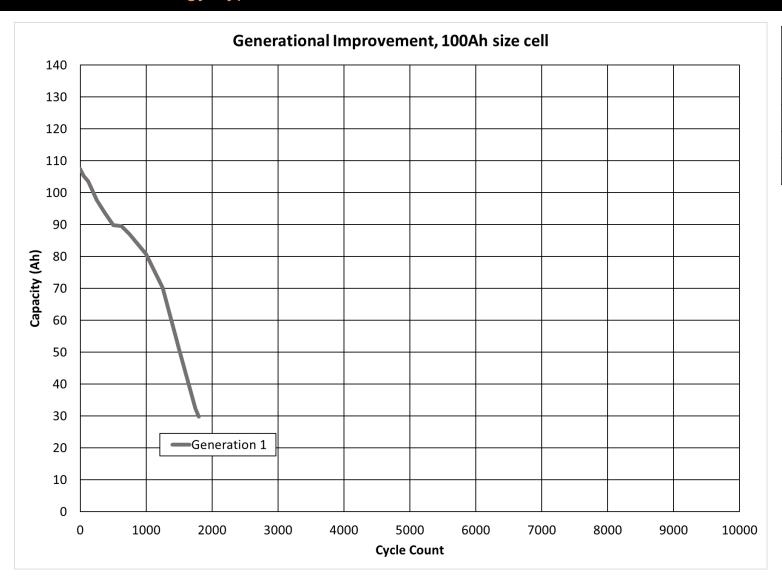

Fusion of Aviation and Automotive Cells



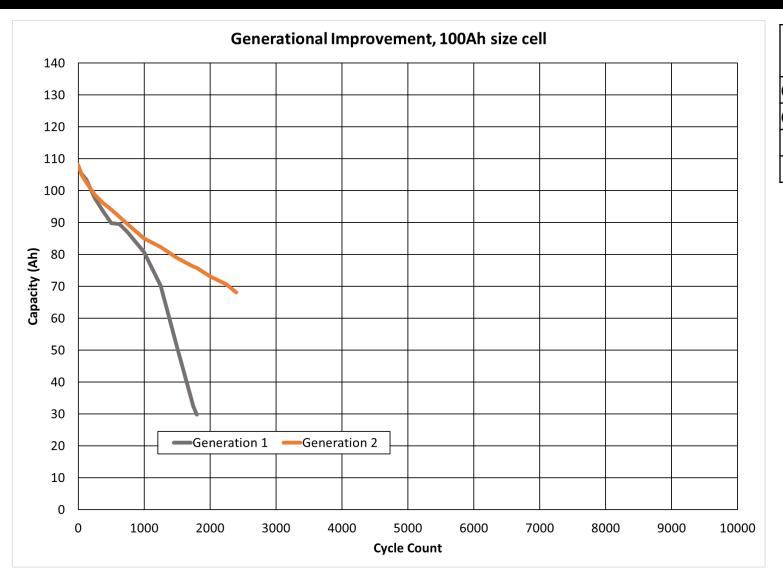
- EH5 Ultra high power cell for Honda/Acura hybrids



- LVP10 Cell for Aviation Applications

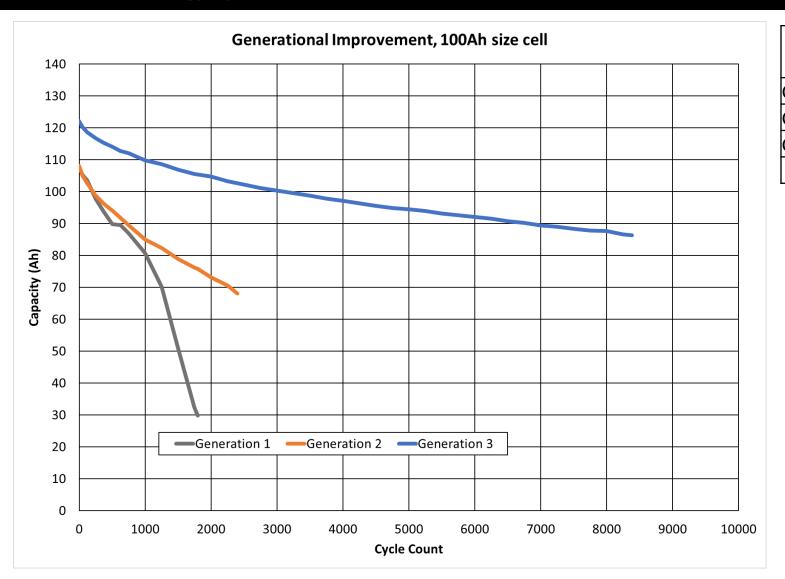

株式会社 ジーエス・ユアサテクノロジー GS Yuasa Technology Ltd.

- Inspired by mature commercial cell designs; Enhanced for space
 - Case neutral design
 - Radiation hardened
 - Hermetically sealed
- Power optimized Gen 4 chemistry suitable for all space vehicles



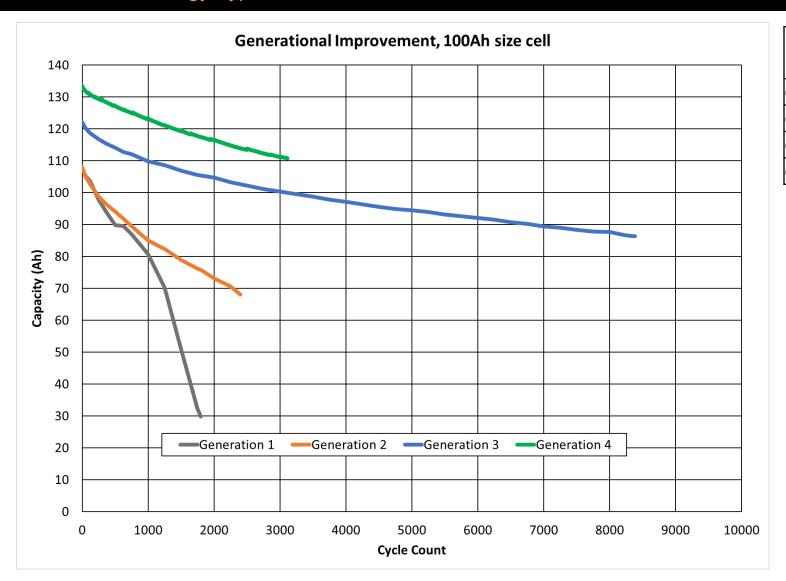
	Cell	Nominal BOL Ah Capacity	EoCV	BOL Wh/Kg
Gen1	LSE100	107	3.98	141

Width	Thick	Height*
130	50	208



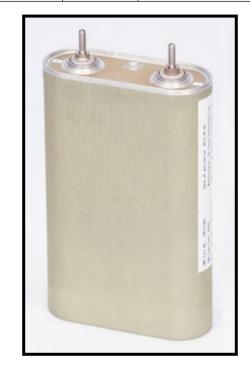
	Cell	Nominal BOL	EoCV	BOL
	Cell	Ah Capacity	EUCV	Wh/Kg
Gen1	LSE100	107	3.98	141
Gen2	LSE100	109	3.98	144

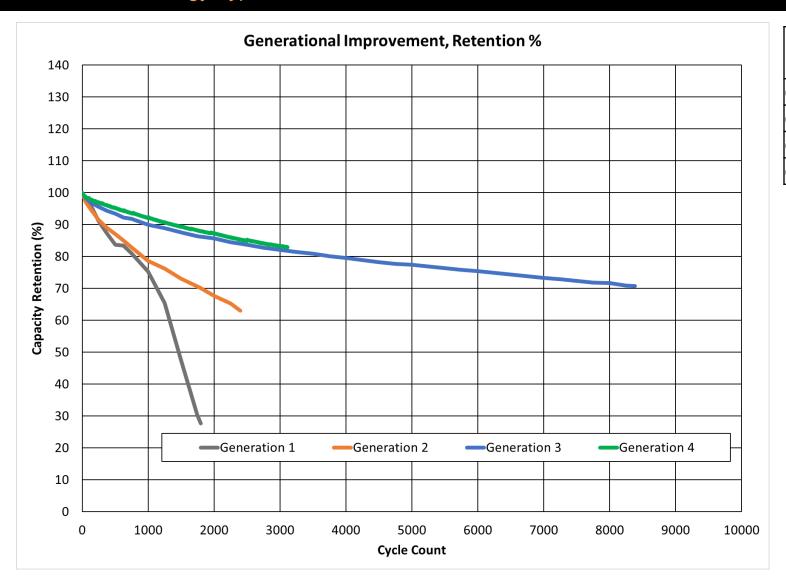
Width	Thick	Height*
130	50	208



	Call	Nominal BOL	FaC\/	BOL
	Cell	Ah Capacity	EoCV	Wh/Kg
Gen1	LSE100	107	3.98	141
Gen2	LSE100	109	3.98	144
Gen3	LSE110	122	4.1	165

Width	Thick	Height*
130	50	208





	Cell	Nominal BOL	EoCV	BOL Wh/Kg
	Cell	Ah Capacity	Capacity	
Gen1	LSE100	107	3.98	141
Gen2	LSE100	109	3.98	144
Gen3	LSE110	122	4.1	165
Gen4	LSE122	132	4.1	175

Width	Thick	Height*
130	50	208

		Nominal BOL	EoCV	BOL
	Cell	Cell Ah Capacity		Wh/Kg
Gen1	LSE100	107	3.98	141
Gen2	LSE100	109	3.98	144
Gen3	LSE110	122	4.1	165
Gen4	LSE122	132	4.1	175

Width	Thick	Height*
130	50	208

Generation 4 **Qualification Status and Life Performance**

Gen IV LSE Cell Configurations & Qualification Status

The available LSE cell form factors will remain constant with 5 cell sizes available. GS Yuasa has manufactured >17,000 "LSE" cells for space applications totaling more than >6.85MWh of energy storage for this design.

Naming convention is the prefix "LSE" followed by the nameplate capacity. All C-rates are in reference to this nameplate capacity.

		Chen	nistry		Dimensions			
	Ge	n 3	Ge	n 4	\A/: al+la	Thick	Usiab*	
	Energy	Power	Energy	Power	Width	THICK	Height*	
				LSE12x	133	21	68.2	
	LSE42	LSE38	TBD	TBD	98	37	151	
Cell	LSE55	LSE51	LSE60	LSE56	130	50	123	
Configuration	LSE110	LSE102	LSE120	LSE112	130	50	208	
	LSE145	LSE134	LSE160	LSE147	130	50	263	
	LSE190		LSE205	TBD	165	50	263	

^{*}not including terminal posts

Gen IV LSE Cell Configurations & Qualification Status

- Configuration Qualified
- Configuration Qualified, QT data property of US Government

Qualification	by	Simi	larity
	•		•

Engineering model cells on test

		Chen	nistry	Dimensions			
	Ge	n 3	Ge	n 4	Width	Thick	Height*
	Energy	Power	Energy	Power	vviatn	Thick	
				LSE12x	133	21	68.2
	LSE42	LSE38	TBD	TBD	98	37	151
Cell	LSE55	LSE51	LSE60	LSE56	130	50	123
Configuration	LSE110	LSE102	LSE122	LSE112	130	50	208
	LSE145	LSE134	LSE160	LSE147	130	50	263
	LSE190		LSE205	TBD	165	50	263

^{*}not including terminal posts

Generation 4 Life Testing

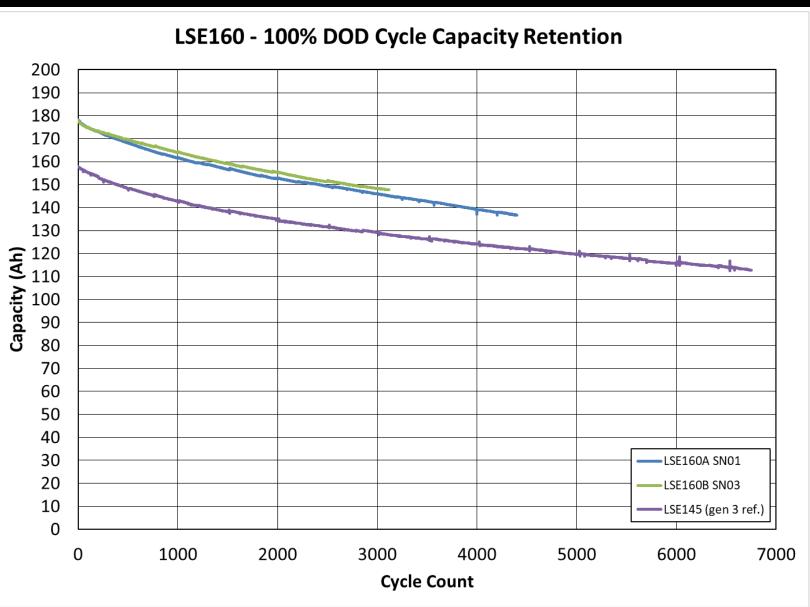
				Test Cor	nditions	S						
Test Name.	Cell Type	Charge Condition (CCCV unless noted)			Discharge Condition		Ambient Test Temp	Number of Cycles	Remark			
		EoCV	Rate	Time	EoDV	Rate	Time	Теттр				
	Energy Cell Testing											
100% DoD Cycling	LSE160	4.10V	80A	4.0hr	2.75V	100A	N/A	25°C	4,500			
80% DOD GEO	LSE160	4.10V	32A	10.8hr	N/A	107A	1.2hr	15°C	2,500	Cont. Deep DoD GEO Cycle		
60% DoD GEO	LSE160	4.10V	32A	10.8hr	N/A	80A	1.2hr	15°C	2,100	Nominal DoD GEO Cycle		
40% DoD LEO	LSE160	4.10V	80A	1.0hr	N/A	120A	0.53Hr	15°C	16,000	Deep DOD LEO Cycle		
25% DoD LEO	LSE160	4.10V	48A	1.0hr	N/A	80A	0.5Hr	15°C	16,000	Nominal DOD LEO Cycle		
				Power (Cell Tes	ting						
100% DoD Cycling	LSE112	4.10V	56A	4.0hr	2.75V	100A	N/A	25°C	4,500			
40% DoD LEO	LSE112	4.10V	56A	1.0hr	N/A	89.6A	0.5hr	20°C	19,500	Deep LEO Cycle		
25% DoD LEO	LSE112	4.10V	56A	1.0hr	N/A	89.6A	0.5hr	20°C	19,500	Deep LEO Cycle		
40%,50% ,60% and 70% DoD LEO	LSE12x	4.10V	Various	1.0Hr	N/A	Various	0.5hr	15°C	15000+	Ultra Deep DOD LEO Cycling		

Above table is not a comprehensive list of all life cycle testing available. Please contact GYLP to request.

Generation 4 Life Testing

				Test Cor	ditions	5				
Test Name.	Cell Type	Charge Condition (CCCV unless noted)			Discharge Condition		Ambient Test Temp	Number of Cycles	Remark	
		EoCV	Rate	Time	EoDV	Rate	Time	Теттр		
			E	nergy (Cell Tes	ting				
100% DoD Cycling	LSE160	4.10V	80A	4.0hr	2.75V	100A	N/A	25°C	4,500	
80% DOD GEO	LSE160	4.10V	32A	10.8hr	N/A	107A	1.2hr	15°C	2,500	Cont. Deep DoD GEO Cycle
60% DoD GEO	LSE160	4.10V	32A	10.8hr	N/A	80A	1.2hr	15°C	2,100	Nominal DoD GEO Cycle
40% DoD LEO	LSE160	4.10V	80A	1.0hr	N/A	120A	0.53Hr	15°C	16,000	Deep DOD LEO Cycle
25% DoD LEO	LSE160	4.10V	48A	1.0hr	N/A	80A	0.5Hr	15°C	16,000	Nominal DOD LEO Cycle
				Power C	Cell Tes	ting				
100% DoD Cycling	LSE112	4.10V	56A	4.0hr	2.75V	100A	N/A	25°C	4,500	
40% DoD LEO	LSE112	4.10V	56A	1.0hr	N/A	89.6A	0.5hr	20°C	19,500	Deep LEO Cycle
25% DoD LEO	LSE112	4.10V	56A	1.0hr	N/A	89.6A	0.5hr	20°C	19,500	Deep LEO Cycle
40%,50% ,60% and 70% DoD LEO	LSE12x	4.10V	Various	1.0Hr	N/A	Various	0.5hr	15°C	15000+	Ultra Deep DOD LEO Cycling

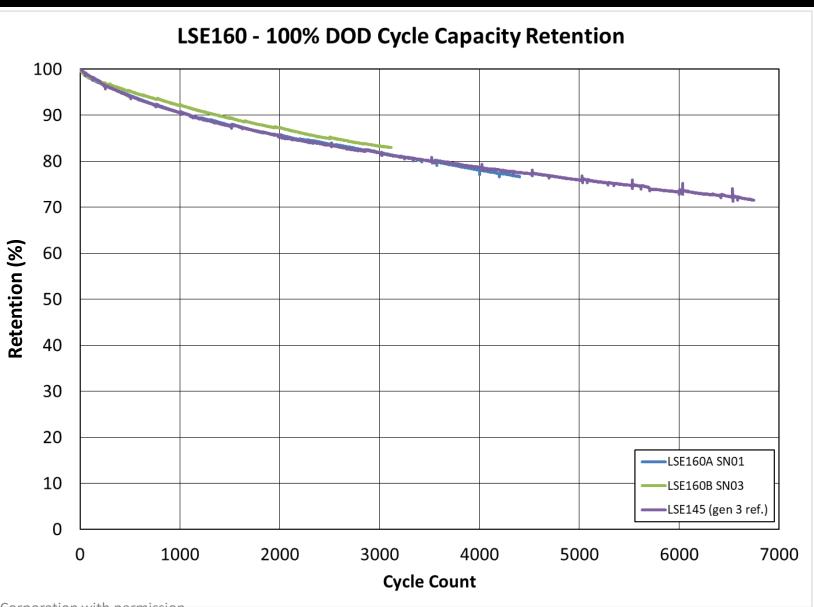
Above table is not a comprehensive list of all life cycle testing available. Please contact GYLP to request.


LSE160 – 100% DOD Cycle Life

Generation 4 Energy Type

	Test Conditions								
		ndition s noted)	Discharge Condition			Ambient Test			
EoCV	Rate	Time	EoDV	Rate	Temp				
4.10V	80A (0.5C)	4hr	2.75V	100A	N/A	25°C			

Generation 4 provides
~10% Ah increase from
Generation 3 with similar
retention characteristics


LSE160 – 100% DOD Cycle Life

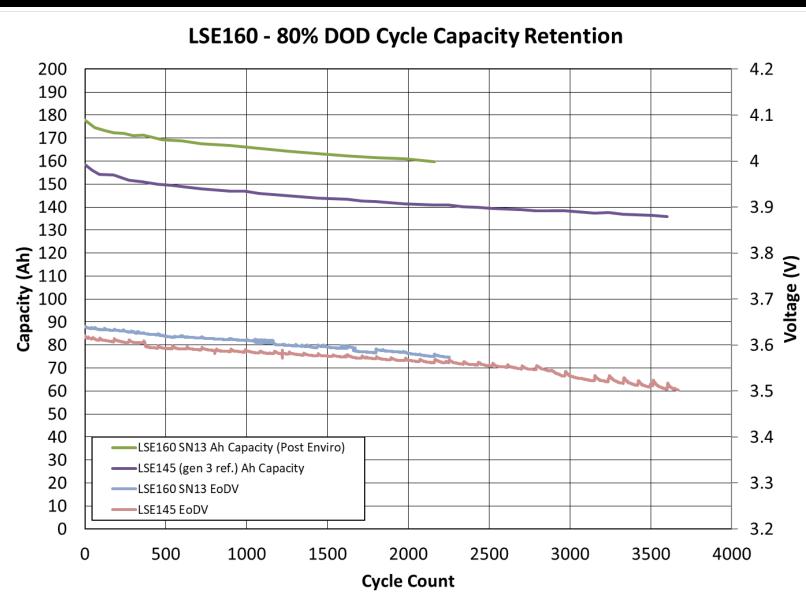
Generation 4 Energy Type

	Test Conditions								
		ndition s noted)	Discharge Condition			Ambient Test			
EoCV	Rate	Time	EoDV	Rate	Temp				
4.10V	80A (0.5C)	4hr	2.75V	100A	N/A	25°C			

Generation 4 provides
~10% Ah increase from
Generation 3 with similar
retention characteristics

LSE160 – 80% DOD Cycle Life (GEO)

Generation 4 Energy Type



	Ambient					
		ndition s noted)	Discharge Condition			Test Temp
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	32A (0.2C)	10.8hr	N/A	107A (0.67C)	1.2hr	15°C

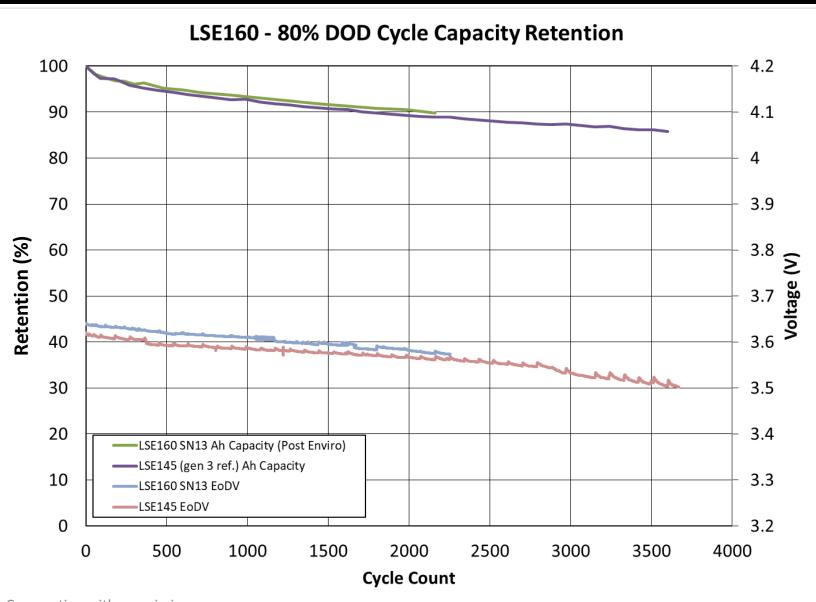
Accelerated 80% DOD GEO cycling profile.

2 cycles per day with no solstice periods.

Cycle count already exceeds typical 15 year GEO profile

LSE160 – 80% DOD Cycle Life (GEO)

Generation 4 Energy Type



	Ambient					
		ndition s noted)	Discharge Condition			Test Temp
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	32A (0.2C)	10.8hr	N/A	107A (0.67C)	1.2hr	15°C

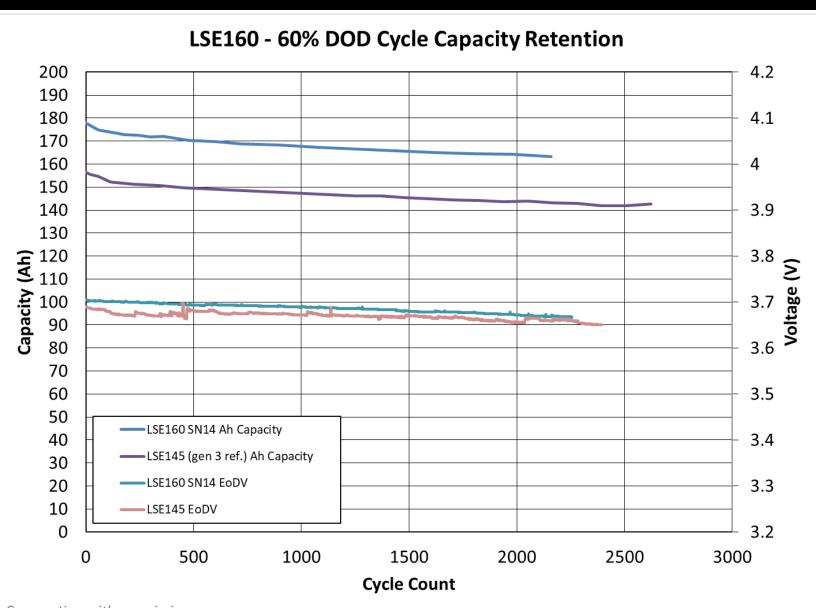
Accelerated 80% DOD GEO Cycle profile.

2 cycles per day with no solstice periods.

Cycle count already exceeds typical 15 year GEO profile

LSE160 – 60% DOD Cycle Life (GEO)

Generation 4 Energy Type

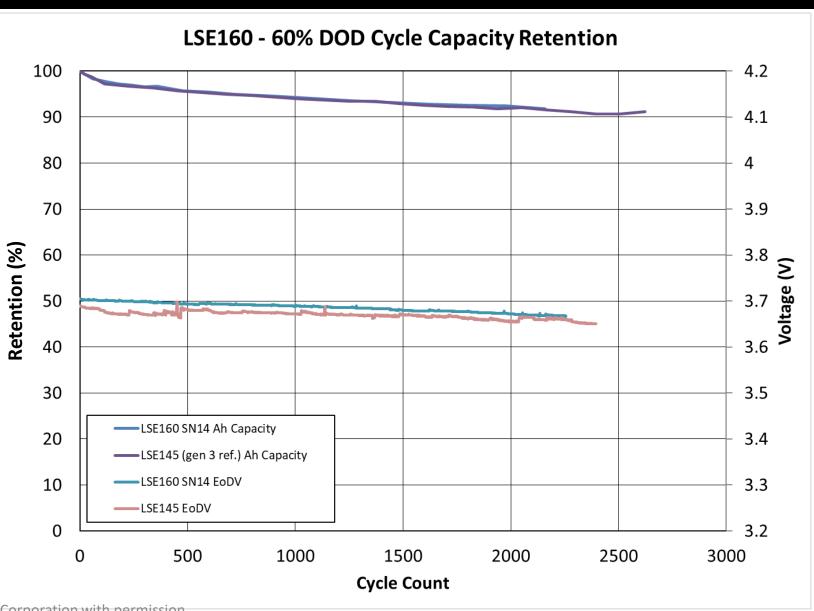


	Ambient					
		ndition s noted)	Discharge Condition			Test
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	32A (0.5C)	10.8hr	N/A	80A (0.5C)	1.2hr	15°C

Accelerated 60% DOD GEO Cycle profile.

2 cycles per day with no solstice periods.

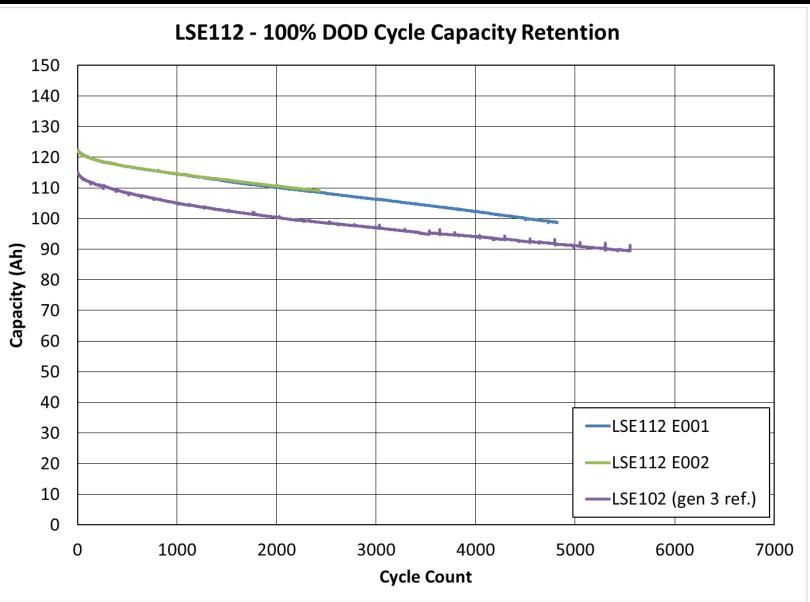
Cycle count already exceeds typical 15 year GEO profile


LSE160 – 60% DOD Cycle Life (GEO)

Generation 4 Energy Type

	Ambient					
		ndition s noted)	Discharge Condition			Test
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	32A (0.5C)	10.8hr	N/A	80A (0.5C)	1.2hr	15°C

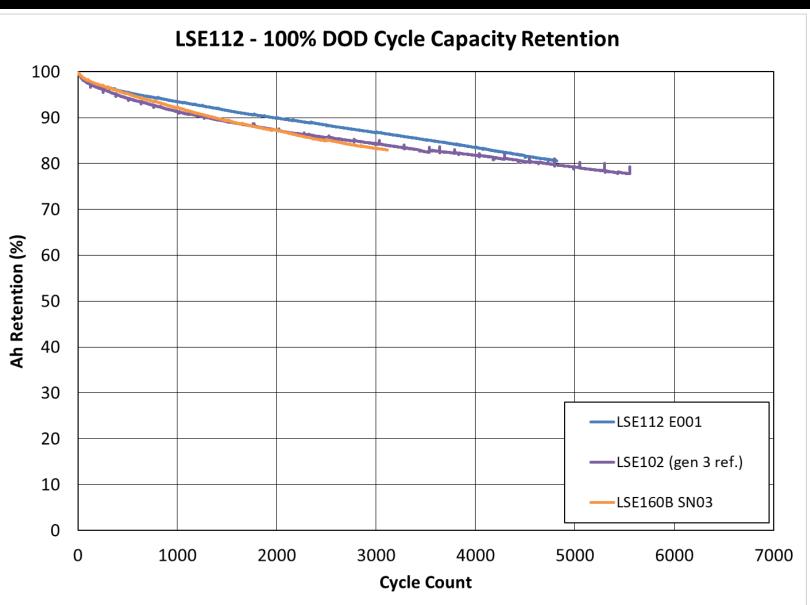
Continuous cycling between 60% and 80% DOD show no adverse effects on Gen 4 performance.


LSE112 – 100% DOD Cycle Life

Generation 4 Power Type

	Ambient					
		ndition s noted)	Discharge Condition			Test Temp
EoCV	Rate	Time	EoDV	Rate	Temp	
4.10V	56A (0.5C)	4.0hr	2.75V	100A	N/A	25°C

Generation 4 provides
~10% Ah increase from
Generation 3 with similar
retention characteristics


LSE112 – 100% DOD Cycle Life

Generation 4 Power Type

Test Conditions						Ambiant
Charge Condition (CCCV unless noted)			Discharge Condition			Ambient Test
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	56A (0.5C)	4.0hr	2.75V	100A	N/A	25°C

Gen 4 Power type Ah retention similar to Gen 3. Power type cells

LSE112 – 40% DOD Cycle Life (LEO)

Generation 4 Power Type

Test Conditions						Ambiont
		ndition s noted)	Discharge		Ambient Test	
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	56A	1.0hr	N/A	89.6A	0.5hr	20°C

40% Deep DoD LEO cycling presents no issues for Gen 3 or Gen 4 chemistries.

LSE112 – 40% DOD Cycle Life (LEO)

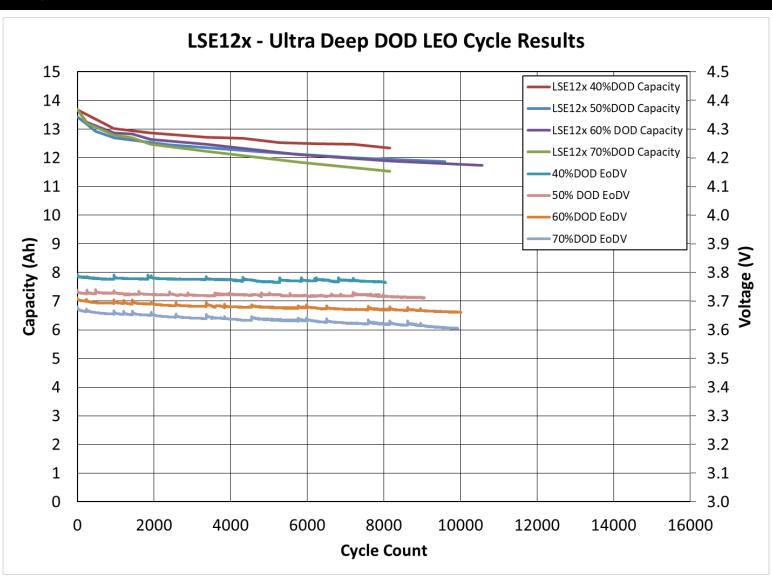
Generation 4 Power Type

Test Conditions						Amabiant
		ndition s noted)	Discharge Condition			Ambient Test
EoCV	Rate	Time	EoDV	Rate	Time	Temp
4.10V	56A	1.0hr	N/A	89.6A	0.5hr	20°C

Gen. 4 Ah retention exhibits marginal improvement to Gen. 3

LSE12x – Ultra High DOD LEO Cycle Tests

New cell size, ultra high performance, Gen 4 Power Type



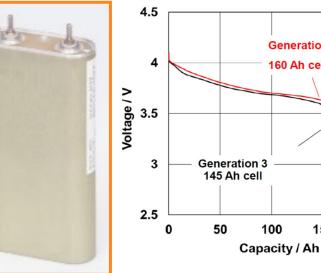
Test Conditions						
Charge Condition			Discharge			Ambient
(CCCV unless noted)		Condition		Test Temp		
EoCV	Rate	Time	EoDV	Rate	Time	
4.1V	Various	1.0Hr	N/A	Various	0.5hr	15°C

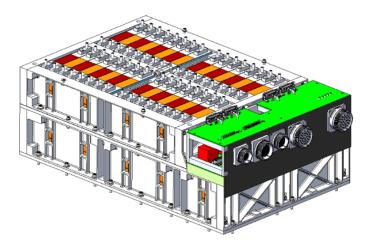
Cycle	Discharge	Charge
40%DOD	0.8C (9.6A) for 0.5hr	0.5C, 4.10V, CC/CV, 1hr
50%DOD	1.0C (12.0A) for 0.5hr	0.6C, 4.10V, CC/CV, 1hr
60%DOD	1.2C (14.4A) for 0.5hr	0.7C, 4.10V, CC/CV, 1hr
70%DOD	1.4C (16.8A) for 0.5hr	0.8C, 4.10V, CC/CV, 1hr

LSE12X Performance Specification

ROL Capacity	4.1V-2.75V	13.6 Ah, 51.0Wh	
BOL Capacity	*4.2V-2.75V	15.0 Ah, 56.3Wh	
N	ameplate Capacity	12 Ah, 45Wh	
Nominal	3.75 V		
Continuous (6A		
Continuo	24A		
Pul	60+A		
DCR (<6 mΩ		
Nomir	1.1mΩ		
	0.390 kg		

Summary




• GS Yuasa's Generation 4 LCO/Graphite chemistry provides meaningful performance increases from Generation 3 including:

Increased Energy Density

- Excellent Capacity Retention under demanding cycle conditions
- Decreased DCR for enhanced voltage performance under load
- Gen. 4 cells available from 12Ah to 205Ah in a single cell
 - LSE12x, LSE60, LSE112, LSE160, LSE205 Qualified
 - Energy and Power electrode optimizations
- LSE12x New 12Ah small form factor cell added to the portfolio
 - Enabling smaller spacecraft access to industry leading performance
 - Scalable battery designed and built by GYLP in Roswell, Ga.
 - Configurations ranging from 720Wh to 4,320Wh

Energy storage design test and manufacturing expertise Industry leading spaceflight heritage Validated and reliable performance modelling

