

Solar Arrays for long-duration missions in LEO orbit. A new approach to the market

25-27th April 2023

DHV Technology | Space Power Workshop. April 25-27, 2023. Torrance, CA.

COMPANY OVERVIEW

dhv

WHO WE ARE

DHV Technology is a Spain based international company that **designs and manufactures solar panels and other power subsystems for space applications**

DHV Technology supplies solar panels and fully customized solutions for the main international companies in the space sector.

Our facilities, with a total of **3700 m²**, consist of:

- + 1200 m² clean room
- + 1000 m² offices
- + 1500 m² warehouse and others

DHV Technology | Space Power Workshop. April 25-27, 2023. Torrance, CA.

WHAT WE DO

- Designing customized products
- Constellation projects manufacturing
- Solar panels for SmallSats and CubeSats
 - Deployable solutions

Tech Park of Andalusia Severo Ochoa 13 – 29590 Malaga (SPAIN)

POWER SOLUTIONS FOR SMALLSATS

250+ PROJECTS CARRIED OUT

3000+

ACCUMULATED DAYS IN ORBIT **200+** SATELLITES FLYING WITH OUR SOLUTIONS

SOLAR ARRAYS

Typical construction

Multi-junction cells with 30% nominal efficiency and integrated bypass diodes

Laydown design

Design the most efficient configuration to provide the maximum power

ATOX protection for LEO

Welded connections protected with silicone.

Space qualified substrates

Customized substrate with different configurations

dhv

Mechanisms design

Customized hinges are designed with different opening angles, configurable torsion springs, and latching systems.

SOLAR PANELS

Deployables

Deployment mechanism integration

 HDRM integration and customized yoke design

High-performance electrical wiring

Space-qualified cables in compliance with ESCC standards.

Inserts integration

Additional integration of inserts for wiring and protection covers

Stack-up

dhv

Product Tree: Materials, process and components

SOLAR PANELS Qualification status

Cubesat 1U body mounted

Fatigue Thermal Cycling

-113/149 °C 0,5 bar 7350 cycles

Technology:

Soldered interconnections PCB substrates with Kapton coverlay.

NUSIL double side as solar cells adhesive and RTV encapsulant.

SMT JANTX blocking diodes

Cubesat 12 U deployable

Fatigue Thermal Cycling

-100/125 °C 0,5 bar 15000 cycles

Technology:

Welding for strings interconnections

PCB substrates with kapton coverlay.

RTV silicone as solar cells adhesive and encapsulant.

SMT JANTX blocking diodes

<u>Smallsat</u>

Fatigue Thermal Cycling

-108/112 °C 0,5 bar 38000 cycles

Technology:

Welding for strings interconnections

CFRP-AI honeycomb substrates with kapton coverlay.

RTV silicone as solar cells adhesive and encapsulant.

Axial leads JANTX blocking diodes on kapton diode boards

Qualification status

DVT Coupon. More than 38.000 thermal cycles

Sequence:

- Bakeout 24h at +125°C
- TVAC 10 cycles, -142°C to +157°C
- APTC 37980 cycles, -108°C to +112°C
- TVAC 10 cycles, -142°C to +157°C

• This test was successfully passed in Q4 2022.

Qualification status

Test	Date	Δpmax (%)	∆lpm (%)	∆Vpm (%)	∆Voc (%)	∆lsc (%)	ΔFF (%)
Reference	21/04/2021	0,00	0,00	0,00	0,00	0,00	0,00
Test 2	21/04/2021	0,00	0,00	0,00	0,00	0,00	0,00
Test 3	10/05/2021	0,39	-0,38	0,90	0,36	-0,57	0,59
Test 4	17/06/2021	-0,71	-1,44	0,67	0,44	-1,35	0,18
Test 5	28/07/2021	1,75	0,23	1,44	0,99	-0,40	1,10
Test 6	13/09/2021	0,89	0,05	0,81	0,17	-0,14	0,84
Test 7	13/09/2021	-1,67	-2,55	0,88	0,54	-2,57	0,37
Test 7b	19/01/2022	-0,34	-1,15	0,79	0,40	-1,70	0,97
Test 7d	28/01/2022	0,98	-0,12	1,08	0,51	-1,68	2,17
Test 8	19/07/2022	-0,45	-0,90	0,43	-0,24	-0,47	0,24
Test 9	10/11/2022	0,58	-0,34	0,90	0,48	0,45	-0,36
Test 10	21/12/2022	1.23	-0.60	1.82	0.72	-0.50	1.00

DVT Coupon. Tests

Between Blocks

- Visual Inspection
- Electroluminescence Test
- Illumination Test (I-V Curve at AM0)
- Grounding Test
- Thermistor measurement
- Insulation Test (500 V, 100Mohms)

• TVAC (Thermal Vacuum Cycling)

- Insulation test DVT-1 (first and last cycle)
- Insulation test DVT-2 (second and ninth cycle)
- Thermistor measurement (higher temperature, lower temperature, and transitions)
- APTC (Atmospheric Pressure Thermal Cycling)
 - Forward continuity check (both DVTs first and last day of the block)
 - Reverse continuity check (both DVTs second and penultimate day of the block)
 - Thermistor measurement (higher temperature, lower temperature, and transitions)

Table 19. Electrical Performance Parameters Deviation DVT-1 String 9

DVT Coupon. More than 38.000 thermal cycles

SOLAR PANELS

Qualification status

Results:

- Electroluminescence tests: No anomalies found.
- DVT-1 presents a degradation of 4% in power. Identified in a single cell and kept during cycles and stable.
- Epoxy adhesives were initially chosen to attach resistors. At 2800 cycles, the bleeding resistor was found broken. Decided to replace it with a silicone CV type.
- Blocking diodes performance nominal under entire cycling.
- ATOX layer on Kapton: Visual inspection OK.

DHV PROJECTS APPROACH

The projects carried out by DHV Technology usually follow this workflow:

DHV Technology | Space Power Workshop. April 25-27, 2023. Torrance, CA.

dhv

TESTING

Test campaigns cover tests such as:

- + Random vibration tests (levels according to requirements)
- + Sinusoidal vibration tests
- + TVAC (vacuum chambers)
- + Functional and deployment tests (0g GSE)

Additional tests:

- + Thermal Shock tests
- + Acoustic tests
- + Radiation tests
- + Humidity tests

dhv

Tech Park of Andalusia Severo Ochoa 13 – 29590 Malaga (SPAIN)

Severo Oc

SEMI-AUTOMATIC LINE

Factory automation Solar cells inspection

Latest inspection and handling technology:

- Scara Robot
- 3 Artificial Vision Cameras
- Position correction through cameras.
- Traceability system

Inspection capacity of 200,000 cells per year. Four different cell types.

With over 30,000 inspected cells, 0% breakage during manipulation.

Identification of defects through physical inspection and Electroluminescence testing

Factory automation Solar cells strings welding

- 6 servo-drive systems with a precision of 0.01 mm.
- 4 artificial vision cameras.
- Traceability system.
- Capacity for strings of up to 32 cells in series.
- Capacity of 120,000 cells per year. 250 cells per shift.
- Identification of cells defects using electroluminescence

DHV Technology www.dhvtechnology.com

Ismael Sánchez (Product Development Manager) i.sanchez@dhvtechnology.com Vicente Díaz (Managing Director & Co-Founder) v.diaz@dhvtechnology.com

ADDRESS

