

Qualification of COTS Battery Modules Designed for Spacecraft Electrical Power Systems Rob Gitzendanner, Richard Coffin,

Michel Lannes

Space Power Workshop (April 25-27, 2023)

EaglePicher at a Glance

TECHNOLOGIES

EaglePicher in Space

Space Applications Heritage

Custom Cells and Batteries

EAGLEPICHER⁺

10p8s Battery Design

COTS Battery Overview

- + Orion crew module battery design heritage adapted for commercial applications
 - + Unmanned
- + Cell agnostic
 - + Right cell for the right application
 - + Power cells typically better suited for high cyclic environment
 - Energy cell typically better suited for low cycle count with high energy requirement
- + Supports a range of space missions
 - + LEO, GEO, HIEO, MEO
- + Can be arranged in parallel or series in EPS to increase capacity or voltage
- + Flight units delivered to two customers
- + First launch expected Q2 2023

Part Number	Capacity (C)	Configuration	Cell Type
SAR-10241	18.8Ah	8P8S	Power
SAR-10235	23.5Ah	8P8S	Energy
SAR-10243	23.5Ah	10P8S	Power
SAR-10237	29.4Ah	10P8S	Energy
SAR-10245	28.2Ah	12P8S	Power
SAR-10239	35.2Ah	12P8S	Energy

10p8s Qualification Battery Performance specification

- + 10p8s battery baselined on several programs
- + Qualification testing performed on this configuration

ltem	Requirement
Battery capacity @ 20°C	29.4 Ah
Battery energy @ 20°C	845 Wh
Battery nominal voltage @20°C	28V
Maximum continuous discharge current	60 A
Maximum pulse discharge current	80 A, 2s
Battery operating temperature (charging)	0°C to 45°C
Battery operating temperature (discharging)	-10°C to 45°C

Cell Balancing

- Analog Balancing
- Proportional cell loading based on cell voltage
 - Balancing current up to 600mA
- Autonomous and or externally commanded balancing
- Balancing tested after battery full charge

Cell to cell voltage spread down to ~12mV in 40 hours

9

Cell Selection

- EPT has implemented a cell evaluation program +
 - Initial characterization to evaluate impact of rates and temperatures on performance +
 - Life tests consisting of accelerated and real time (LEO) cycling tests and storage life tests +
 - 10 cell types evaluated to date \pm
 - 4 currently in test, 3 more planned to start before YE 2023
- Enables cell selection that best fit mission requirements +
- Insurance against eventuality of cell obsolescence +

© 2023 by EaglePicher Technologies - This document does not contain technology or technical data controlled under either ITAR or EAR.

10p8s Battery Qualification

Qualification Test Suite

- + Initial inspection
 - + Physical examination
 - + Ground bonding
 - + Isolation
- + Capacity
- + QT Sine and Random Vibration
- + QT shock testing
- + TVAC cycles
- + Thermal cycles
- + EMI/EMC
- + Pulse discharge testing

Initial inspection

- + Physical examination Visual inspection for workmanship, cleanliness, and FOD
 - + Battery measured and weighed

Battery length	10.2 in
Battery width	6.8 in
Battery Height	3.5 in
Battery weight	5.6 kgs

+ Battery ground bonding and electrical insulation meets specification

Initial capacity

- + Battery capacity measured at 30A and 460W (~16A) at 20°C following CC/CV charge to 4.2V and until first cell hits 3V
- + Meets specification requirements for capacity (29.4Ah) and energy (845Wh)

Initial Capacity	Discharge Capacity	Discharge Energy	Average Discharge Voltage	Average Discharge Current
30A discharge	30.5 Ah	856.2 Ah	28.06 V	30 A
460W discharge	30.8 Ah	887.4 Ah	28.82 V	16 A

Sine and Random Vibration

- Low level modal sine surveys (5-2000 Hz) performed before and after every run
- Random levels same as NASA GEVS (Random)
- + Battery discharged at 5A during vibration
 - No fluctuations in battery voltage, cell voltage, or battery current observed during tests
- + Resonant frequencies well above 300Hz
- + Frequency shifts <10% for all axes
- + No impact on battery capacity and energy

Resonant Frequencies

	X-axis (Longitudinal)		Y-axis (Normal)		Z-axis (Lateral)				
		Post-sine			Post-sine			Post-sine	
	Pre-sine	Pre-random	Post-random	Pre-sine	Pre-random	Post-random	Pre-sine	Pre-random	Post-random
Accelerometer 3	361.2 Hz	364.5 Hz	385.8 Hz	766.5 Hz	785.1 Hz	755.1 Hz	379.0 Hz	380.1 Hz	380.1 Hz
Accelerometer 4	363.4 Hz	365.6 Hz	363.4 Hz	917.5 Hz	925.8 Hz	887.7 Hz	353.7 Hz	351.6 Hz	332.1 Hz
Accelerometer 5	599.5 Hz	594.1 Hz	580.0 Hz	614.0 Hz	614.0 Hz	606.7 Hz	349.0 Hz	347.4 Hz	327.2 Hz

Sine

Frequency (Hz)	Qualification (g)
5.00	1.00
22.00	20.00
100.00	20.00

Random

Frequency	PSD (g ² /Hz)		
(Hz)	Qualification		
20	0.026		
50	0.16		
800	0.16		
2000	0.026		
Overall	14.1Grms, 180 seconds		

15

Shock testing

- + Battery tested to 2000g
- + Battery discharged at 5A during vibration
 - + No fluctuations in battery voltage, cell voltage, or battery current observed during tests

Shock levels

Frequency (Hz)	Qualification (g)
100.00	60.00
1000.00	2000.00
10000.00	2000.00

TVAC testing

EAGLEPICHER

- 8 cycles between -20°C and 60°C with minimum 1- hour soaks at plateaus
- Battery capacity measured at 20°C in vacuum before and after cycling
- + No impact of operating in vacuum at temperature extremes

Operating Thermal Cycles (Air)

- + 3 cycles performed between -10°C and 45°C with minimum 1-hour soaks prior to discharge
 - + 3 full discharges at -10°C
 - + 3 full discharges at 45°C
- + Battery charging allowed during temperature transition steps
- + Demonstrates ability of battery to operate at temperature extremes

EMI/EMC

TECHNOLOGIES

- + The battery was tested per MIL-STD 461G
- + RE102, Radiated Emissions
 - + No emissions over limit
- + CE102, Conducted Emissions
 - + No emissions over limit
- + CS118 Electro-Static Discharge
 - + No susceptibility observed
- + The battery was charged and discharged after testing with no observed issue

National Institute for Aviation Research Wichita State University

> 1845 N. Fairmount Wichita, Kansas 67260-0093

WICHITA STATE

Norional Institut

23-2152-TR073 Eagle Picher MIL-STD-461G EMC Test Report for the SAR-10237-05 Battery

Page 1 of 253

EMC Testing On The SAR-10237-05 Battery

Report No 23-2152-TR073, Rev -

19

Maximum Continuous and Pulse Discharge Capability

- + The battery can be discharged continuously at 60A
- + 2s 80A pulse on top of 60A continuous capability demonstrated

Conclusion/Summary

- + EaglePicher has an extensive heritage in space applications
 - + Over 3 Billion Cell-hours operating in space, Over 14 years operational on Mars
 - + Deep knowledge base on how to design for long endurance, high reliability missions
- + EPT developed COTS battery using commercial 18650 format cells has ben qualified
 - + Low-cost solution
 - + Can be stocked for quick delivery
 - + Baselined on several flight programs
- + Engineering and Flight units delivered to two different customers
- + First launch Q3 2023
- + UN/DOT 38.3 completion Q3 2023

michel.lannes@eaglepicher.com

To learn more visit www.eaglepicher.com.