Batteries for Space Applications

Presenter: Baljit S. Riar & Michael Futrell **Authors:** Baljit S. Riar¹, Robert Darling¹, Parag Kshirsagar¹, Michael Futrell² ¹Raytheon Technologies Research Center ²Collins Aerospace

Unrestricted Content, approved for public release

Space Batteries

- Provides power:
 - Deployment of solar panels, firing pyros and rockets for altitude control
 - During solar eclipse periods
 - Load management and peak shaving for lunar grids

Image taken from: https://images.nasa.gov/

Battery Requirements

- High safety and reliability especially when tied with human exploration missions
- Mission specific needs:
 - Orbiter mission of Venus has similar temperature as Earth
 - Surface temperature of Venus is 450°C, and lowest on Mars is -125°C near poles
 - High radiation e.g. 4Mrad for Jupiter environments
 - Life of the mission: Orbital, lander, rover has their own needs

Modular Battery Pack

Modules in series and parallel

Battery Degradation

- Dominant mechanism: SEI formation and growth, Lithium plating, current collector corrosion, electrolyte decomposition, electrode facture, SEI fracture
- Observable effects at terminals:
 - -Increase in resistance
 - Decrease in Capacity

Kandler Smith et.al., Optimizing Battery Usage and Management for Long Life, 2016

Life Extension

- Active balancing
 - Power exchange among modules
 - -Life extension
 - -High efficiency

Capacity Loss Due to Radiation

- Some capacity loss from gamma radiation using a high dose of Cobalt-60
- All the cells tested in the study showed a higher tolerance to radiation
- In comparison to the control cells, the maximum capacity loss of < 2% occurs after 20 Mrad exposure

Image adapted from: Performance of Commercial High Energy and High Power Li-Ion Cells in Jovian Missions Encountering High Radiation Environments. NASA Battery Workshop November 19-21, 2019

Hybrid Energy Storage Module (HESM) MODULAR, SCALABLE ENERGY STORAGE

- Bi-directional, high kW converter + energy storage
- Integral charge, discharge, & safety controls
- Active power quality control / filtering of HVDC bus
- HVDC bus stable with pulse and regenerative loads

Battery Module

Thank you

Contact: Baljit Riar baljit.riar@rtx.com

Mike Futrell mike.futrell@collins.com

