Analysis of the Artemis I Orion Spacecraft Power System Performance

E

IT.

Space Power Workshop Torrance, CA April 25, 2023

Spencer Furin NASA Glenn Research Center spencer.c.furin@nasa.gov

Kith

T

Hector Hernandez NASA Johnson Space Center hector.hernandez@nasa.gov

1.

Anuj Patel Lockheed Martin Space anuj.patel@Imco.com

National Aeronautics and Space Administration

HH

ARTEMIS I

The first uncrewed, integrated flight test of NASA's Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport.

 LAUNCH SLS and Orion lift off from pad 39B at Kennedy Space Center.

16

- 2 JETTISON ROCKET BOOSTERS, FAIRINGS, AND LAUNCH ABORT SYSTEM
- CORE STAGE MAIN ENGINE CUT OFF With separation.

- PERIGEE RAISE MANEUVER
- EARTH ORBIT Systems check with solar panel adjustments.

TRANS LUNAR INJECTION (TLI) BURN Maneuver lasts for approximately 20 minutes.

- INTERIM CRYOGENIC PROPULSION STAGE (ICPS) SEPARATION
- AND DISPOSAL The ICPS has committed Orion to TLI.
- OUTBOUND TRAJECTORY CORRECTION (OTC) BURNS As necessary adjust trajectory for lunar flyby to Distant Retrograde Orbit (DRO).
- OUTBOUND POWERED FLYBY (OPF)
 60 nmi from the Moon; targets DRO insertion.

LUNAR ORBIT INSERTION Enter Distant Retrograde Orbit for next 6-23 days.

DISTANT RETROGRADE ORBIT Perform half or one and a half revolutions in the 12 day orbit period 38,000 nmi from the surface of the Moon.

- DRO DEPARTURE Leave DRO and start return to Earth.
- 13 RETURN POWER FLY-BY (RPF) RPF burn prep and return coast to Earth initiated.

🙆 RETURN TRANSIT

Return Trajectory Correction (RTC) burns as necessary to aim for Earth's atmosphere; travel time 5-11 days.

- CREW MODULE SEPARATION FROM SERVICE MODULE
- **16 ENTRY INTERFACE (EI)** Enter Earth's atmosphere.
- SPLASHDOWN Pacific Ocean landing within view of the U.S. Navy recovery ship.

Flight Day 1 Post-Solar Array Deployment

Flight Day 1 Service Module Inspection

Flight Day 13 Orion Selfie

Flight Day 20 Pre-Lunar Flyby

Flight Day 20 Post-Lunar Flyby

Analysis Tools

High fidelity

- Spacecraft Power Capability (SPoC), Lockheed Martin
- System Power Analysis for Capability Evaluation (SPACE), NASA GRC
- Used for verification of requirements and validation of mission plans
- Detailed inputs and assumptions, modelling a particular case (slow to setup)
- Choosing a conservative and bounding case can be challenging

Screening

- Power screening tool, Lockheed Martin
- Simpler, conservative assumptions (fast to setup and run)
- Quickly assess thousands of possible trajectories

Challenges – Analyze the Mission Space

- Rapidly analyze years' worth of launch opportunities (17,000+ trajectories)
- Sun, Earth and Moon phasing throughout the year causes eclipses to move relative to major mission events
 - Could not use generic mission timeline analysis across the mission space
 - Mission duration variability (28-42 days) caused additional complexity
- Ensure Orion survives with potential power faults, such as:
 - 1 Battery Failure
 - 1 Solar Array Wing Failure
- Provide mission ops situational awareness for potentially power stressing situations
 - Deconflict events such as correction burns or out of attitude maneuvers (that reduce power generation)

Reducing Fidelity, Increasing Speed

- Create a new analysis tool that would leverage existing trajectory data, assume conservative CONOPS, and simple charging and discharging models to speed up the analysis
 - Charging and Discharging assumptions are based in high fidelity SIMULINK Integrated battery model (SPOC)
- High Fidelity analysis takes ~20 hours to run an End-to-End power analysis
- New Power Screening Tool can scan over 17,000 trajectories in less than 2hrs
- Ensure the Power Screening tool is more conservative such that the results are bounding

Continuous integration led to quick analysis turnaround

Go/No-Go Recommendations

ATEMIS

- Launch window cutouts based on minimum voltage for a given epoch
- Provide situational awareness to mission ops to schedule power downs prior to stressing situations

Launch Epoch

Power Generation

Load Demand

Lower than expected loads driven by heater usage

Battery Voltage

Battery performance benefited from low overall load demand

PCDU LCL Uncommanded Opening Anomaly

- Uncommanded opening of latching current limiter (LCL) on Power Conditioning and Distribution Unit (PCDU) end of umbilical
- Occurred 22 times on 4 different LCLs (one at a time, always Umbilical 1)
- One similar event involving multiple 120V load LCLs
- One similar event involving 28V DC-DC converter internal to the PCDU
- Never observed in ground testing at the component, subsystem, or vehicle level
- Root cause undetermined, investigation still ongoing

Glint from crew module backshell

- Planned to measure during external survey
- Observed localized current increases from increased flux

Anomalies and Interesting Observations

Solar array photoluminescence

- Partially shadowed string of solar cells
- III-V cell photoluminescence occurs in visible spectrum
- Happened to occur while filming upper stage separation

Questions?

Spencer Furin Hector Hernandez Anuj Patel

Acronym Definitions

- **CM** Crew Module
- CONOPS Concept of Operations
- **DC** Direct Current
- DRO Distant Retrograde Orbit
- EI Entry Interface
- GRC Glenn Research Center
- ICPS Interim Cryogenic Propulsion Stage
- LCL Latching Current Limiter
- LEO Low Earth Orbit
- NASA National Aeronautics and Space Administration

- **OPF** Outbound Powered Flyby
- OTC Outbound Trajectory Correction
- **PCDU** Power Conditioning and Distribution Unit
- **RPF** Return Powered Flyby
- **RTC** Return Trajectory Correction
- SLS Space Launch System
- **SPACE** System Power Analysis for Capability Evaluation
- **SPoC** Spacecraft Power Capability
- TLI Trans-Lunar Injection