Transporting Batteries: Considerations for SOC, Cell Types, and Test Methods

Tapesh Joshi, Ph.D., Judith Jeevarajan, Ph.D. Underwriters Laboratories, Inc.

UL and the UL logo are trademarks of UL LLC © 2022

© 2022 by Underwriters Laboratories, Inc. Published by The Aerospace Corporation with permission

Heating Test

- 40W Kapton heater was used to initiate thermal runaway 1" x 2" – 20W/in² or 2" x 2" – 10W/in²
- Heating rate was maintained at 10 °F/min
- Cells were subjected to thermal runaway test at 6 different states-of-charge -100%, 50%, 40%, 30%, 15%, and 0%

Manufacturer	Cell Design	Cathode Chemistry	Rated Capacity (mAh)	Measured Capacity	Internal Resistance (mΩ)
				(mAh)	
А	18650	NCA	3200	3230	45
В	18650	NCA	3200	1810	35
С	26650	NMC	5000	5030	19
D	Pouch	NMC	3300	3180	18
	526495				
Е	26650	LFP	2500	2520	6
F	Pouch	LFP	10000	10400	8
	8790160				
G (Single cell	Single pouch	Unknown	2915	2770	57
Smart phone	cell with BMS				
battery)					
H (2P2S	18650	Unknown	4900	4950	111
Camcorder battery)					

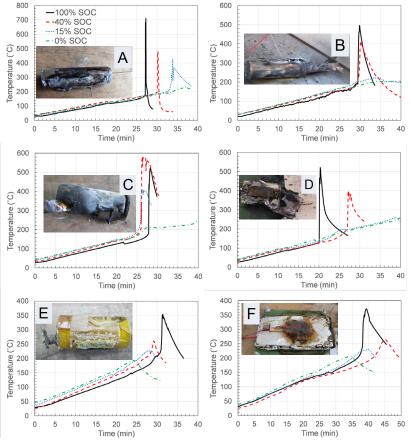
2" x 2" Kapton

1" x 2" Kapton Tape Heater

https://doi.org/10.1149/1945-7111/abc8c4

Heating Test

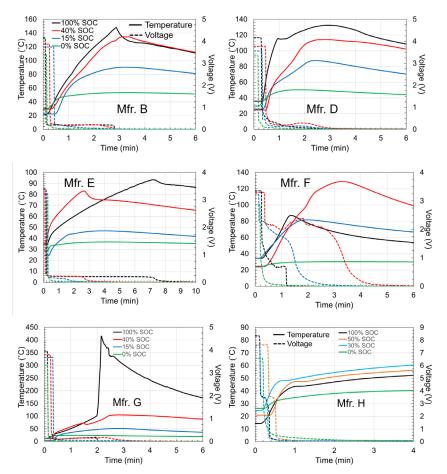
Venting temperature


- Most of the cells followed similar trends, where temperature at which venting occurs increases (↑) as SOC goes down (↓)
- Except for Manufacturer D, E, and F (LFP & Pouch) venting temperature is around the same value

•Thermal runaway onset temperature

 Onset temperature increases (↑) as SOC goes down (↓) except for manufacturer B (low-cost cells)

•Electrolyte leakage observed for all Manufacturers at all SOCs, except for Manufacturer B (no correlation) , and D (only low SOCs)


Cell Type			Trends				
	100	50	40	30	15	0	SOC ↓
A – 18650 NCA	TR, Fire, Smoke	TR, Fire, Smoke	TR, Fire, Smoke	TR, Fire, Smoke	Mild TR, Smoke	-	Venting T (↑) Onset T (↑) Max T (↓)
B- 18650 NCA	TR, Fire, Smoke	TR, Smoke	TR, Smoke	TR, Smoke	-	-	Venting (same) Onset T (no correlation) Max T (↓)
C – 26650 NMC	TR, Fire, Smoke	TR, Fire, Smoke	TR, Smoke	TR, Smoke	TR, Smoke		Venting T (↑) Onset T (↑) Max T (↓)
D – Pouch NMC	TR, Fire, Smoke	TR, Smoke	TR, Smoke	-	-	-	Venting T(same) Onset T (↑) Max T (↓)
E – 26650 LFP	TR, Smoke	TR, Smoke	TR, Smoke	-	-	-	Venting T(same) Onset T (↑) Max T (↓)
F – Pouch LFP	TR, Smoke	-	-	-	-	-	Venting T(same) Onset T (↑) Max T (↓)

https://doi.org/10.1149/1945-7111/abc8c4

External Short Test

- External short was carried out on cells that do not contain the internal PTC device. This includes low quality cells, pouch format, and LFP cells.
- The load was held for 3 hours, or until thermal runaway.
- Load used for the short was 8-10 mohms.
- Thermal runaway observed in 100% SOC for manufacturers B and G.
- Melting tab prevented hazards in some cases (fail-safe conditions).
- BMS provided protection against external short for batteries and were removed for tests.
- Protection against external shorts was provided through BMS in batteries and PTC in cells for manufacturer H.

https://doi.org/10.1149/1945-7111/abc8c4

Tapesh Joshi, Ph.D. tapesh.joshi@ul.org

UL and the UL logo are trademarks of UL LLC © 2021.