

2022 Space Power Workshop Energy Storage III April 26-29, 2022

Development of Graphene Batteries for Use in Space Applications

Elena Bekyarova, Ph. D.

Principal Investigator Carbon Solutions Inc. bekyarova@carbonsolution.com

© 2022 by Carbon Solutions Inc. Published by The Aerospace Corporation with permission. Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2022-1365.

Batteries for Space Applications

- □ Batteries play critical role in optimum satellite operation
- □ Batteries are especially important in low-earth orbit (LEO) satellites: supply power during eclipse
- □ Space batteries must meet special requirements:
- Energy density
- Charge and discharge rates: LEO satellites circle the earth in 90 minutes; eclipsed for 35 minutes
- Depth of Discharge (DOD): limited to low levels to reduce stress
- □ *Weight*: Batteries comprise a significant portion of the overall mass, typically 10 to 20%.
- Lifetime: Batteries endure about 5,000 cycles per year
- □ Li-ion batteries (LIBs) are the most popular choice.

2

Benefits of Graphene

- Graphite is the main anode material in LIBs
- Graphene adsorb lithium on both sides

Anode	Capacity, mAh/g
Graphite (LiC ₆)	372
Graphene (LiC ₁₂)	744

- Record in-plane chemical diffusion coefficients for Li at room temperature of up to 7 × 10⁻⁵ cm² s⁻¹ vs. 10⁻⁷-10⁻⁶ cm² s⁻¹ in graphite
- Reports of reversible specific capacity as high as 1264 mAh g⁻¹ at a current density of 100 mAh g⁻¹

Replacing graphite (3D-material) with graphene (2D):

- increased energy
- more power
- fast operation
- ✤ reduced weight
- Ionger battery life

Graphene

Tunable interlayer distance d = 0.335 -0.38 nm

Technical Challenges

Graphene

- Graphene re-stacks during electrode preparation and losses advantages over graphite
- Irreversible Li insertion, capacity loss with cycling
- Dendrite growth

Custom-designed graphene materials for space batteries

hybrid graphene - carbon nanotubes

heteroatom doped graphene

added lithiophilic sites

Holey graphene

- in-plane nano-holes allow fast ion transport
- holey graphene sheets can be densely packed
- in-plane holes allow rapid solvent and air transport to avoid trapped molecules during wet or dry electrode fabrication
- high surface area reduces effective current density and interface fluctuations during cycling, resulting in uniform Li deposition and dendrite suppression
- scalable manufacturing processes

Liangbing Hu, Nano Lett. 2015, 15, 7, 4605-4610

Hetero-atom doped graphene

Hetero-atoms:

- improve the interface with electrolyte
- increase the electrical conductivity of graphene
- eliminate dendrite growth: lithiophilic groups such as pyridinic-N, pyrrolic-N and thiophene S act as electron acceptors and facilitate charge transfer with lithium leading to smooth deposition of lithium without formation of dendrites.

SAMPLE	Reaction time	N			S	
		pyridinic	pyrrolic	graphitic	C-S-C	C-SO _x
S1: NR-hGO100B	4 hours	28	63	9		-
S2: NR-hGO96B	6 hours	26	68	6		-
S3: NR-hGO96C	8 hours	28	65	8		-
S4: N,S-RhGO-100d	6 hours	19	72	9	82	18

data from XPS analysis

Capacity of Graphene Materials as a Function of Hetero-atom Content

Technical Approach

Preparation of electrodes by doctor blade coating of inks on current collectors

Prelithiation of Graphene Anodes

Without Prelithiation

With Prelithiation

Compensates the initial irreversible capacity loss
Raises working voltage
Decreases electrolyte consumption

METHOD	CONCEPT
I. Direct contact with lithium	Li foil in contact with electrode
II. Electrochemical	Anode assembles with Li metal and
	electrolyte; low current driven process
III. Additives	Addition of Li salts to the electrolyte

Prelithiation by Direct Contact with Lithium

 The anodes prelithiated by direct contact with Li foil resulted in full cells with good energy density (about 150 Wh/kg), but they did not have stable cycling and the cell capacity was continuously decreasing after 5 cycles at 1C.

Electrochemical Prelithiation

Charge-discharge of a full cell at 1C

c1035a 1C 1h09m E = 200 Wh/kg

The cell was cycled at 1C between 2.6 V and 4 V; capacity retention ~82% after 530 cycles

Optimization of Electrolyte Additives

Vinylene Carbonate (VC)

Charge-discharge of Full Cells Built with VC **Capacity vs Cycle Number of a Battery** Additive in the Electrolyte with VC Additive in the Electrolyte 1.0 c1056b 1C 1h02m E=203 Wh/kg 0.75 3.8 Capacity, mAh 0.20 3.6-× 3.4-Retained capacity ~ 93% 3 0.25 2.8 2.6-0.5 1.5 2 2.5 time/h 0 20 60 100 140 180 220 260 300 340 380 420

Cycle No.

12

Pouch Cells with Prelithiated Graphene Anodes

LEO Cycling of Graphene-based Batteries

Coin cells were cycled continuously at 25 °C with charging rate of C/1.5 and discharge rate of C/2.25 to 40% DOD

14

Battery Characterization: Capacity & Resistance

Stable LEO Cycling of Graphene Battery

- Developed graphene-based batteries with energy density in the range of 350 Wh/kg and Coulombic efficiency of >90%
- The optimum graphene materials are comprised of N-doped holey graphene
- The size of the nanoholes in the graphene sheets can be effectively controlled by reaction time
- Heteroaton-doped holey graphene materials exhibit high specific capacity: ~1,500 mAh/g
- The electrochemical prelithiation process produced the highest quality prelithiated anodes.
 - These improvements were critical in achieving graphene batteries with high energy density in the range of 350 Wh/kg and good LEO cycling stability.
- The graphene batteries demonstrated stable performance for 500 cycles at 40% DOD with capacity retention 95 -100 % and stable resistance.
- Graphene batteries show stable LEO cycling for 3,000 cycles (tests continue)

Acknowledgement: This work was supported by the US Air Force (AFRL/RVS) Small Business Innovation Research program under contract FA9453-21-P-0516, TPOC Alec Jackson.