

Next Generation Lithium-Ion Cell Development and In-Orbit Performance

© 2022 by EnerSys Published by The Aerospace Corporation with permission

Next Gen Cell Development

EnerSys/Pyrotek/Forge Nano Collaboration Project Resulted in Technology Insertion on SMC Program, LEMUR2 for June 2021 Launch

EnerSys Gen 2.1 Chemistry **1.4Ah 18650 Cell, 118Wh/Kg** Non-Zero Volt Capable Cell EnerSys Domestic Graphite/NCA Material EnerSys Gen 2.2 Chemistry **1.4Ah 18650 Cell, 136Wh/Kg** Zero Volt Capable Cell EnerSys Domestic Graphite/NCA Material EnerSys Gen 3.0 Chemistry 2.4Ah 18650 Cell, 210Wh/Kg Zero Volt Capable Cell ALD Coated Pyrotek Domestic Graphite/Forge Nano NMC-811Material

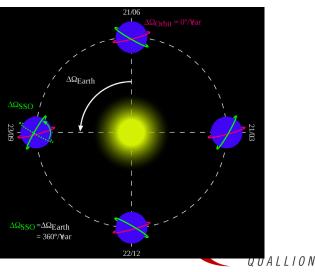
EnerSys Gen 3.0 Zero Volt Chemistry Cells Delivered to Spire Global December 2020 June 2021 Falcon 9 Launch on 3-U Cubesat LEMUR2 Spacecraft 1st All Domestic Material Battery on Secure Space Program "This document has been reviewed and determined not to contain export-controlled technical data."

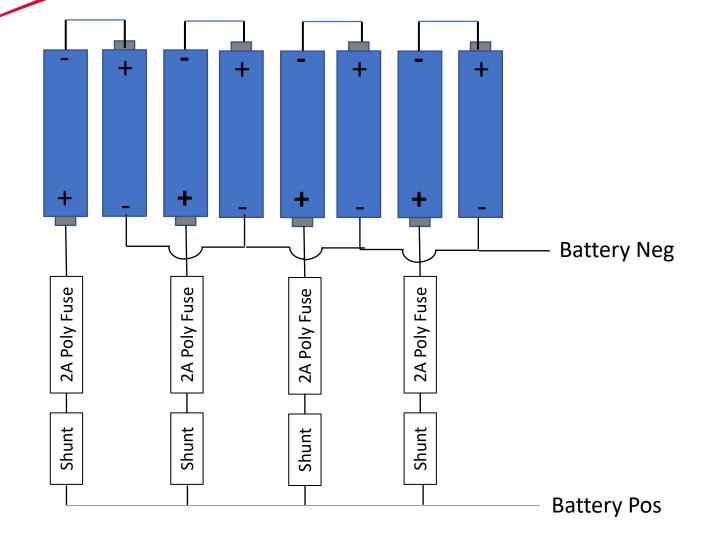
Forge Nano Atomic Layer Deposition

Atomic layer deposition (ALD) is a vapor phase technique used to deposit thin films onto a substrate.

The process of ALD involves the surface of a substrate being exposed to alternating precursors, which do not overlap but instead are introduced sequentially.

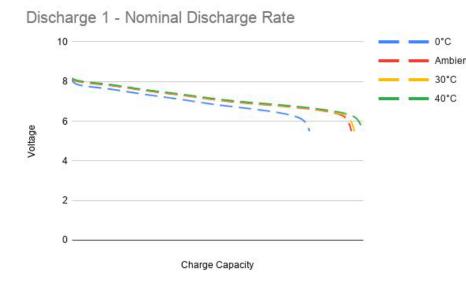
The use of Particle ALD or PALD to deposit simple and complex metal oxide nano-coatings around each tiny particle that makes up the powder coating on the anode and cathode electrodes in lithium-ion batteries is increasingly popular as it has been shown to improve the lifetime of the battery, increase the battery capacity and significantly improve safety.


www.forgenano.com for more information



Lemur-2 Mission

- Space Force technology demonstration program
 - Demonstrate new innovative technology in a space environment
 - Payload technology was EnerSys/Pyrotek/Forge Nano Gen 3.0 Zero-Volt chemistry 18650 battery cells
 - Perform 20% and 40% DoD electrical cycling in-orbit
 - Battery cells delivered to Spire Global December 2020 for incorporation into spacecraft battery configuration (2S4P Battery)
 - 3-month cell development program
 - June 2021 Falcon 9 Launch on LEMUR2 Spacecraft
 - 550Km orbit, Sun-synchronous orbit
 - 13:30 Local Time at the Descending Node


Battery Configuration

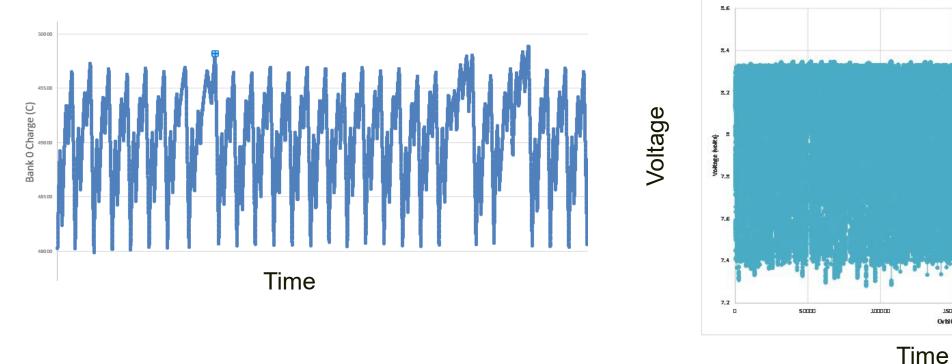
- 2S4P Configuration
- Measuring individual string current and Total battery voltage

 2S4P (~9.25Ah) Battery was subjected to reduced pre-launch qualification testing

Initial Battery Characterization

Test #	Test Type	Test Description
1	Inspection	Post-Build and Module Checkout
2 - 7	CDC	Various charge rates and temperature profiles
8	Inspection	Post-Thermal #1
9	Vibration Test	For axes in [Z, Y, X]: • Resonance Search • Sine Sweep • Resonance Search • Random Vibration • Resonance Search
10	Inspection	Post-Vibration
11 - 12	CDC	Various charge rates and temperature profiles
13	Lifetime Discharge	Executing CDC x5 under nominal charge/discharge rates
14	Inspection	Post-Thermal #2 and Lifetime Discharge
15	Pulse	High current pulses to evaluate voltage drop
16	Short Circuit	
17	Inspection	Post-Short Circuit
18	CDC	Post-Short Circuit CDC
19	30-Day Retention	

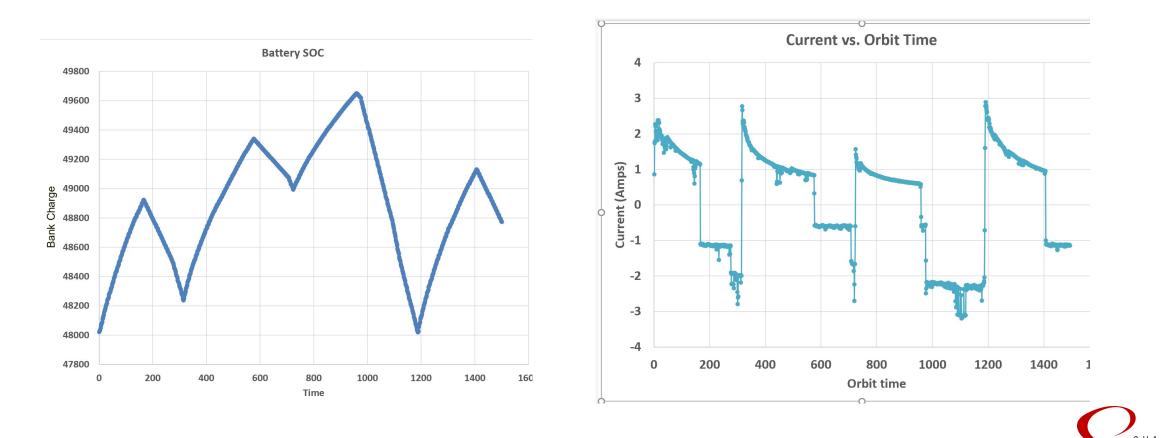
20% DoD Cycling Data Summary


Voltage vs. Orbit Time

20000

31000

QUALLION

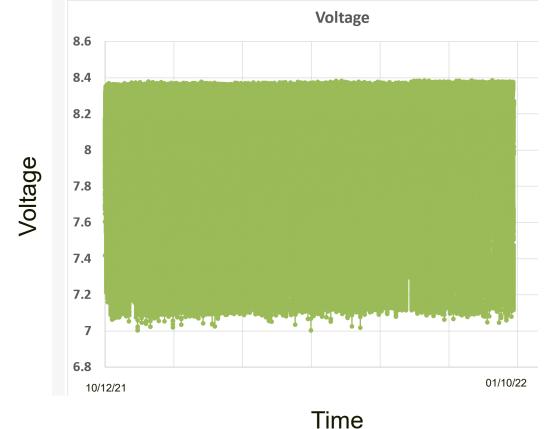

- Nominal 20% DoD testing started on August 11, 2021 and concluded on September 25, 2021
 - 200 Cycles completed with no noticeable capacity fade
 - ~ 6,800 Coulombs planned removed from the battery equaling 20% of the energy (1.889 Ah)
 - ~1,700 Coulombs removed per parallel string (0.472Ah)

20% DoD Cycling Data Summary

Due to orbital parameters and the ability of the solar arrays to provide charge power, it takes several orbits to fully charge the battery

"This document has been reviewed and determined not to contain export-controlled technical data."

EnerSys.


40% DoD Cycling Data Summary

Nominal 40% DoD testing started on October 12, 2021 and concluded on January 10, 2022

- 200 Cycles completed with no noticeable capacity fade

EnerSys

- Again, took multiple orbits to fully recharge the battery prior to the next 40% Discharge
- ~ 13,392 00 Coulombs planned removed from the battery equaling 40% of the energy
 - ~3,150 Coulombs removed per parallel string which was a bit lower than the planned 3,348 Coulombs per string

- EnerSys and NASA JPL teamed up to develop high energy, wide operation temperature chemistries
 - Delivering high energy between -40° to +60°
 - Long cycle life (>500 cycles @ 100% DoD)
 - Can be produced in 18650 or prismatic mechanical formats
 - Examining performance of foreign & domestic anode and cathode materials
 - Domestic EnerSys Graphite anode and Lithium Nickel Cobalt Aluminum Oxide (NCA) cathode produced by EnerSys under a USG Title III program
 - Domestic Graphite and Forge Nano Foreign Lithium Nickel Manganese Cobalt Oxide (NMC)
 - Forge Nano ALD coated MCMB Graphite and NMC-811

- QRD Series Cells: ALD Coated Graphite ALD Coated LiNi_{0.80}Co_{0.20}Mn_{0.20}O₂ (NMC 811) Cells (1.80 Ah Nameplate)
 - 4 Different electrolyte variants studied.
 - Tests completed:

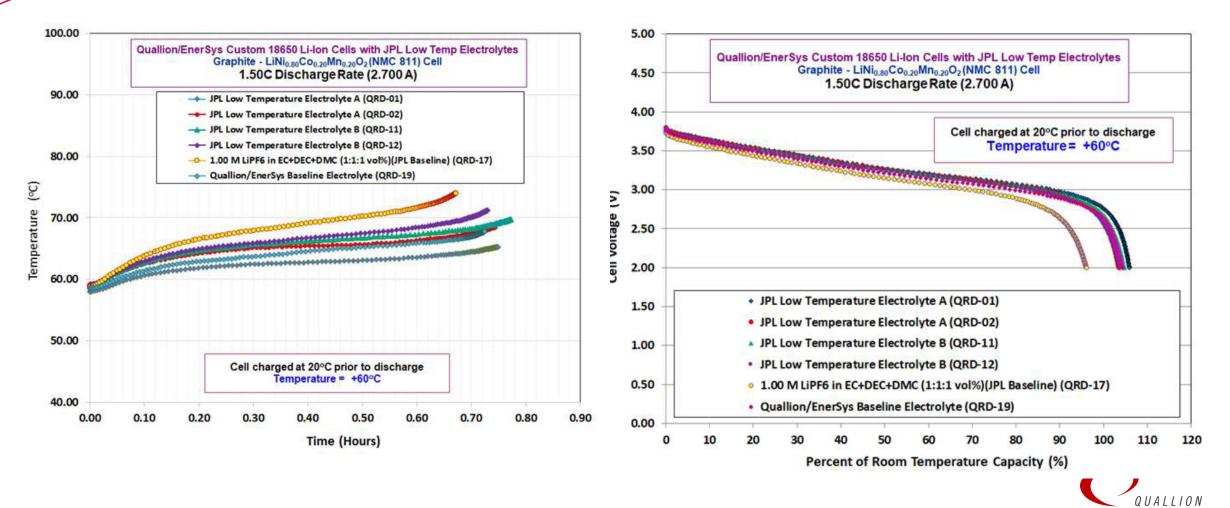
EnerSys

- Initial Characterization at +20°C (C/5 rates, 2.50V to 4.10V)
- Initial Characterization at 0°C (C/5 rates, 2.50V to 4.10V)
- Initial Characterization at -20°C (C/5 rates, 2.50V to 4.10V)
- Discharge rate characterization testing with room temperature charging (in order performed)
 - Discharge testing at -40°C: C/50, C/20, C/10, C/5, C/2, 1.0C, 1.5C
 - Discharge testing at -50°C: C/50, C/20, C/10, C/5, C/2, 1.0C
 - Discharge testing at -60°C: C/50, C/20, C/10
 - Discharge testing at -30°C: C/50, C/20, C/10, C/5, C/2, 1.0C, 1.5C
 - Discharge testing at -20°C: C/50, C/20, C/10, C/5, C/2, 1.0C, 1.5C
 - Discharge testing at +60°C: 1.5C
- Cycle life testing at +25°C, 100% DOD, C/5 rates, 2.50V to 4.10V: Testing on going

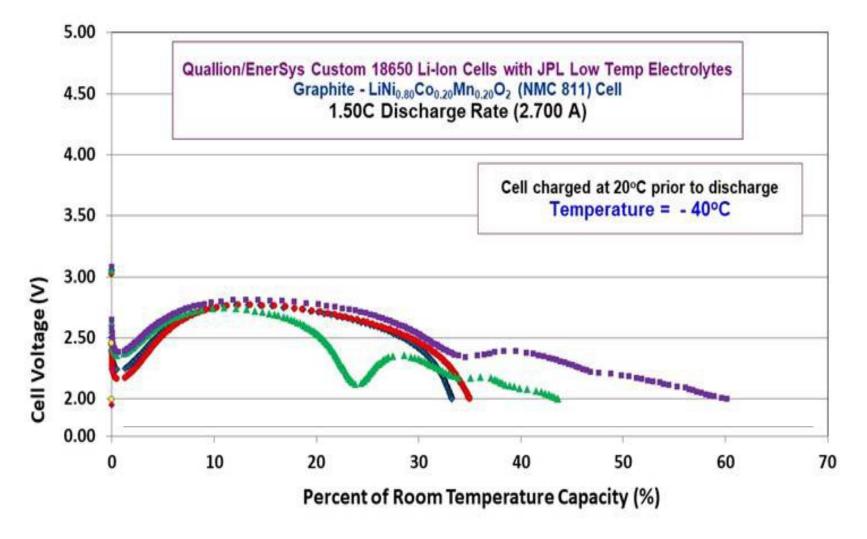
Graphite - NMC 811 Cells (1.80 Ah Nameplate)

JPL Low Temperature Electrolyte B

- JPL Electrolyte formulation B provided the highest available energy delivery at the lowest temperature and at the highest discharge rates.
- Electrolyte and cell chemistry is not optimized for charge/discharge rates
- Cell Performance has not been characterized for cycle life assuming low temperature discharge / room temperature charge.


				Tomporate		
Temperature (°C)	Rate	Current (mA)	Capacity (Ah)	Watt-Hours (Wh)	Energy (Wh/Kg)	% of Room Temp
+ 60°C	1.5C	2700	1.9704	6.3514	166.86	103.87
20°C	C/5	50	1.8970	6.9036	181.37	100
- 20°C	1.5C	2700	1.3302	3.7843	99.42	70.12
	C/2	900	1.4389	4.7189	123.98	75.85
	C/5	360	1.5421	5.3652	140.96	81.29
- 30°C	1.5C	2700	1.2323	3.2597	85.64	64.96
	C/2	900	1.3263	4.1055	107.86	69.92
- 40°C	1.5C	2700	1.1407	2.829	74.32	60.13
	C/2	900	1.1516	3.2548	85.51	60.71
- 50°C	1.0 C	1800	0.4487	1.1089	29.13	23.65
	C/2	900	0.7303	1.9071	50.10	38.50
	C/5	360	1.1350	3.1038	81.54	59.83
- 60°C	C/10	180	0.9107	2.2455	59.00	48.00
	C/20	90.0	1.1094	2.8864	75.83	58.48
	C/50	36.0	1.2535	3.5892	94.30	66.08

+60°C Testing Details


Graphite - NMC 811 Cells (1.80 Ah Nameplate)

-40°C Testing Details

Graphite - NMC 811 Cells (1.80 Ah Nameplate)

- QSC Series Cells: Graphite/15% SiO LiNi_{0.80}Co_{0.15}Al_{0.05}O₂ (NCA) Cells (2.40 Ah Nameplate)
 - 6 Different electrolyte variants studied.
 - Tests completed:

nerSvs.

- Initial Characterization at +25°C (C/10 charge and C/5 discharge, 2.50V to 4.10V)
- Initial Characterization at 0°C (C/10 charge and C/5 discharge, 2.50V to 4.10V)
- Initial Characterization at -20°C ((C/10 charge and C/5 discharge, 2.50V to 4.10V)
- Discharge rate characterization testing with room temperature charging (in order performed)
 - Discharge testing at -40°C: C/50, C/20, C/10, C/5, C/2, 1.0C, 1.5C
 - Discharge testing at -50°C: C/50, C/20, C/10, C/5, C/2, 1.0C
 - Discharge testing at -60°C: C/50, C/20, C/10, C/5, C/2, 1.0C

Graphite/15% Silicon - NCA Cells (2.40 Ah Nameplate)

			QCS-04			QCS-09			QCS-24					
			JPL Wide Temperature Range Electrolyte A			JPL Wide Temperature Range Electrolyte C			JPL Low Temperature Electrolyte B					
Temperature (°C)	Rate	Current (mA)	Capacity (Ah)	Watt-Hours (Wh)	Energy (Wh/Kg)	% of Room Temp	Capacity (Ah)	Watt-Hours (Wh)	Energy (Wh/Kg)	% of Room Temp	Capacity (Ah)	Watt-Hours (Wh)	Energy (Wh/Kg)	% of Room Temp
25°C	C/5	480	2.2089	7.967	173.98	100	2.2297	8.045	175.35	100	2.1410	7.770	168.52	100
- 40°C	1.0 C	2200	1.6692	4.3302	94.57	75.56	1.7314	4.5238	98.59	77.65	1.4232	3.6187	78.48	66.47
	C/2	1100	1.5931	4.2464	92.74	72.12	1.7483	4.7015	102.47	78.41	1.5143	3.9764	86.24	70.73
	C/5	440	1.7806	5.1490	112.45	80.61	1.9177	5.6109	122.29	86.01	1.7922	5.0759	110.08	83.71
	C/10	220	1.9119	5.9209	129.30	86.55	2.1686	6.8412	149.10	97.26	1.9329	5.9239	128.47	90.28
	C/20	110	2.0172	6.5602	143.27	91.32	2.0808	6.8345	148.95	93.32	2.0232	6.5982	143.10	94.50
	C/50	44	2.1083	7.2592	158.53	95.44	2.1369	7.4035	161.36	95.84	2.0044	6.9323	150.34	93.62

Graphite/15% Silicon - NCA Cells (2.40 Ah Nameplate)

				QCS-04				
				JPL Electrolyte A				
Test	Temperature (°C)	Rate	Current (mA)	Capacity (Ah)	Watt-Hours (Wh)	Energy (Wh/Kg)	% of Room Temp	
Α	25°C	C/5	480	2.2089	7.967	173.98	100	
w	0°C	C/5	480	2.0438	7.303	159.48	92.52	
V	- 20°C	C/5	480	2.0050	6.866	149.96	90.77	
U	- 30°C	C/5	480	1.9420	6.265	136.82	87.91	
J	- 40°C	1.5C	3300	1.6760	4.3256	94.47	75.88	
Н		1.0 C	2200	1.6692	4.3302	94.57	75.56	
G		C/2	1100	1.5931	4.2464	92.74	72.12	
Р	- 50°C	1.0 C	1800	0.0071	0.0154	0.34	0.32	
0		C/2	900	0.9787	2.4057	52.54	44.30	
т	- 60°C	C/5	360	0.2753	0.5875	12.83	12.46	
S		C/10	180	0.5608	1.3392	29.25	25.39	
R		C/20	90.0	1.0346	2.6541	57.96	46.84	
Q		C/50	36.0	1.6402	4.7251	103.19	74.25	

• Special thanks to:

EnerSys

- The team at Spire Global (Jeff Bryan, Jordan Smith, Jordan Bridgeman)
- The team at EnerSys/Quallion (Ryo Tamaki, Cesar Diaz and his team)
- The team at Forge Nano (Paul Lichty, Daniel Higgs)
- The team at Pyrotek (Bruce Gallaher, Michael Sekedat)
- NASA JPL Marshall Smart

