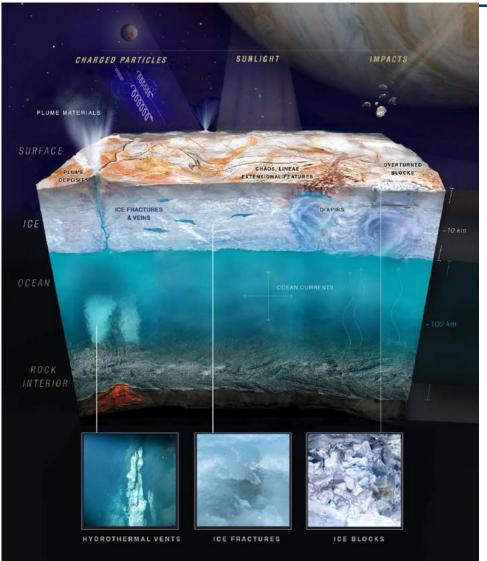
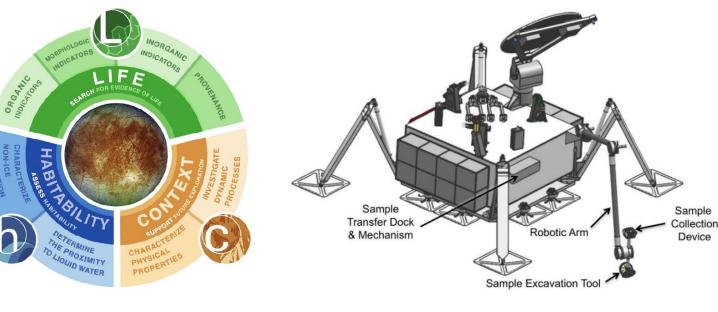


Development of High Specific Energy Li/CF_x Primary Battery Cells for Deep Space Missions

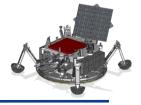
Erik J. Brandon, Hui Li Seong, Jasmina Pasalic, Keith Billings, John-Paul Jones, John Paul Ruiz, Ruoqian Lin and Will West Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA

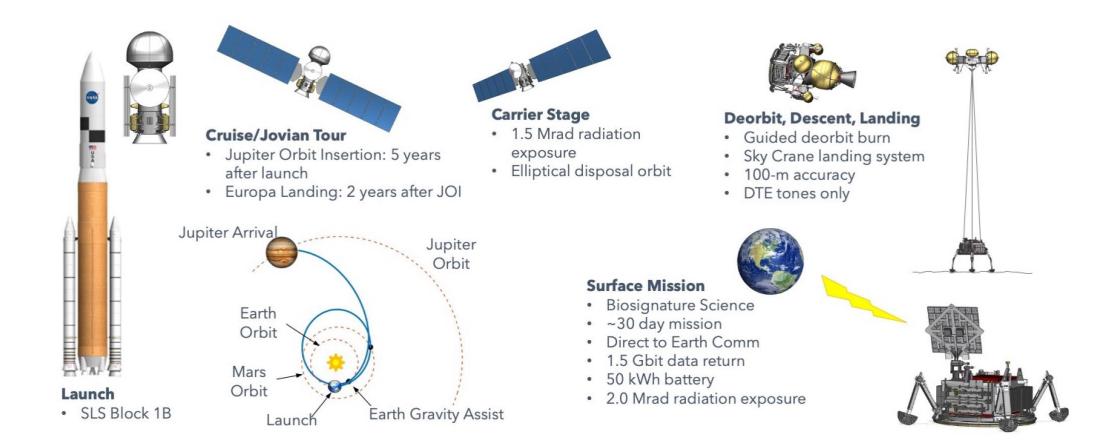

> Owen Crowther and Mario Destephen EaglePicher Technologies


Space Power Workshop (Virtual) April 28, 2022


This document has been reviewed and determined not to contain export controlled technical data (CL#22-1421)

Europa Lander Mission Concept




- A mission concept to land on Europa
- Europa is an ocean world within our solar system, believed to harbor significant liquid water under an icy shell
- Mission objectives:
 - Assess habitability
 - Search for evidence of life
 - Characterize the surface to support future exploration

EUROPA

Europa Lander Mission Timeline

- 5+ year cruise time after launch to reach Jupiter Orbital Insertion (JOI)
- Europa landing two years after JOI
- 20-30 day mission

Defining Europa Lander Battery Needs

Low Gain Antenna Collection Dock Adaptive Stabilizers (x4)	Parameter	Values	Comments
	Operational temperature	0 to +70°C	Significant waste heat from avionics and cells
	Non-operational temperature	-40 to +70°C	During cruise stored at 0°C
	Peak power	~500 W	Sampling
Robotic Arm (5 DoF) with End Effector Collection Tools Bellypan Primary Battery Assembly (x4) TSS Assemblies Show in Red	Average power	~20 W	Sleep
	Radiation tolerance	2-3 Mrad	JOI and Landing
	Storage Duration	7-11 years	Pre-launch, cruise and JOI

- Primary battery only mission
- Initial 50 kWh energy target with 100 kg battery mass for 20-30 day mission to achieve primary science objectives
- Initial target of 500 Wh/kg battery (4X battery modules, each ~12.5 kWh)
- Estimate >650 Wh/kg for primary cells, with 25% overhead for battery packaging/structure
- Must also consider de-ratings for losses and design principles, further increasing specific energy requirement
- Identify opportunities to increase specific energy, to provide margin and extend timeline on the surface

Consideration of Battery Deratings

Loss Factor	Value	Comments
Depassivation Requirement	-3%	JPL Design Principle
80% Depth of Discharge Requirement	-20%	JPL Design Principle
Loss of string	~600 Wh (-1%)	JPL Design Principle
Storage Losses	-16%	Estimate based on 2% annual loss at 20°C
Other losses	-5%	Estimate based on 10 Mrad radiation testing

- Taken off the top of the initial 50 kWh energy target
- What can we do to increase cell specific energy?
- What can we do to address deratings?



Cell Chemistry	Vendor	Part Number	Format	Flight Heritage	Specific Energy, Wh/kg (20°C, 50 mA)
Li/SO ₂	Saft	LO 26 SXC	D cell	Yes	420
Li/SOCI ₂	Saft	LSH 20	D cell	Yes	421
Li/MnO ₂	Ultralife	CR15270	D cell	No	250
Li/FeS ₂	Energizer	L91	AA cell	No	350
Li/CF _x -MnO ₂	EaglePicher	LCF-133 (COTS and modified)	D cell	No	514
Li/CF _x	EaglePicher	LCF-129	D cell	No	690

- Could not come close to targets using cells with flight heritage
- Identify opportunities to increase cell specific energy using higher energy chemistries
- Must consider battery chemistry with no flight heritage
- Rates will be relatively low given battery size and power requirements (50 to 750 mA / cell)

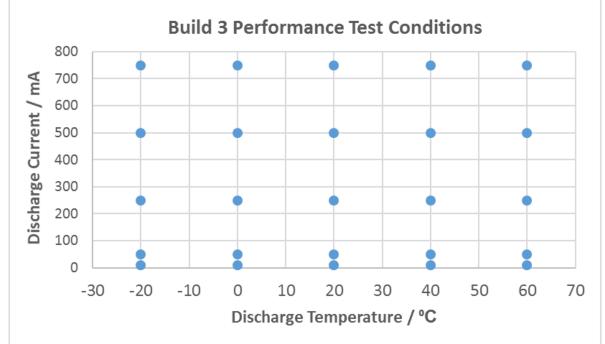
- JPL engaged in development with EaglePicher starting in 2018, for series of three cell "builds" with successively increasing performance
- Focus on increasing specific energy through cell process improvements
- Utilize aluminum can design and increase active material loadings
- Final delivery of Build 3 cells to JPL in January 22
- Designed and implementing extensive test campaign to evaluate suitability for Europa Lander mission concept

- 200 cells total
- Cell Dispersion Testing
- Beginning-of-life (BOL) Performance Testing
- Irradiated and Aged Performance Testing
- Storage Testing
- Voltage Delay / Depassivation Testing
- Heat Evolution Testing
- Gas Sampling of Irradiated Cells

Test	Number of Cells
Cell Dispersion Testing	10
BOL Pristine Performance Testing	72
Aged Irradiated Performance Testing	24
Self Discharge Testing	60
Depassivation / Voltage Delay Test	6
Heat Evolution	9
Control Cells (irradiation)	6
Gas sampling irradiated cells	13
Total	200

Cell Performance Test Matrix

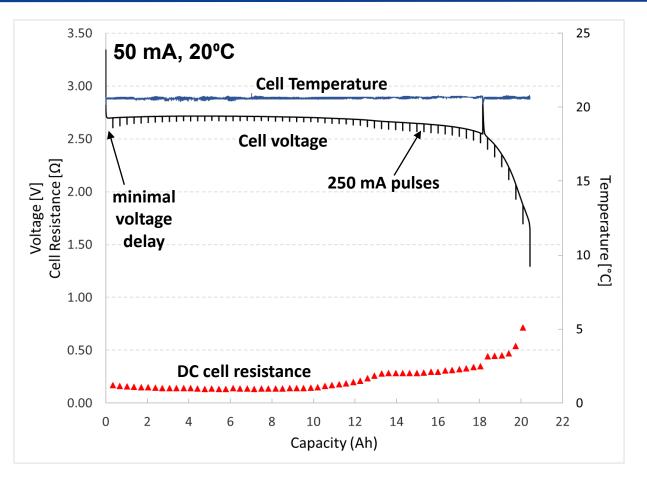
Cell Type: Pristine, non-irradiated cells at beginning-of-life (BOL)


Test Description: Pulse discharge testing at mission relevant temperatures

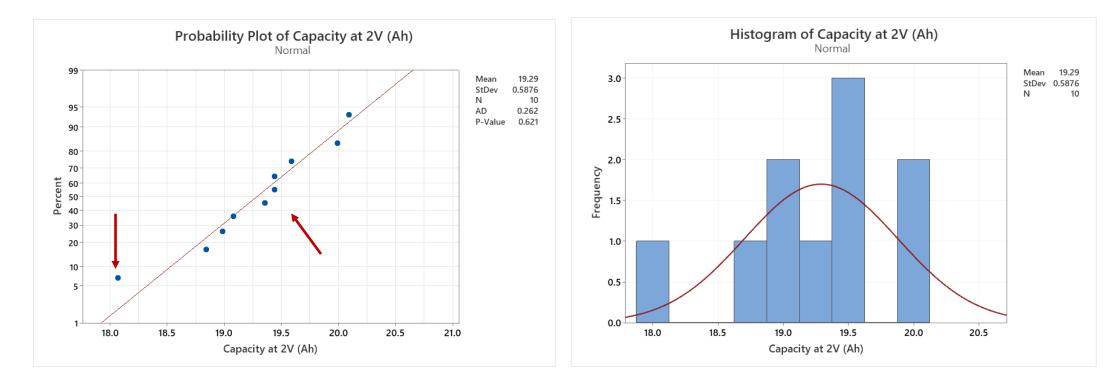
Test Conditions

- 3 cells per condition (72 cells total)
- -20°C, 0°C, 20°C, 40°C, 60°C
- 10, 50, 250, 500, 750 mA

Rationale for test

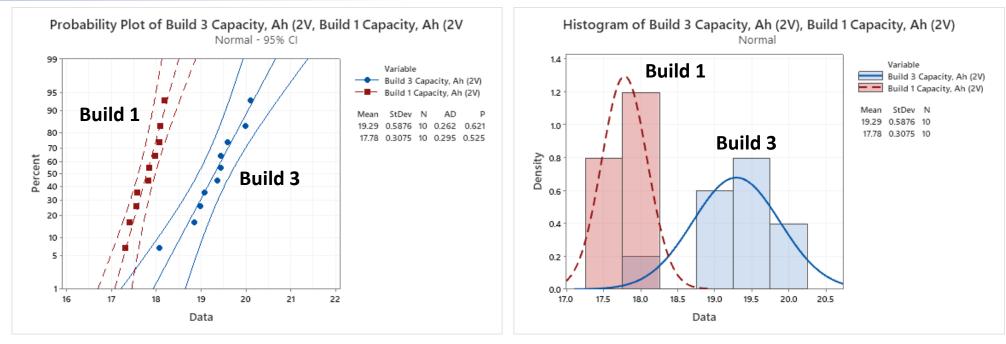

- Benchmark cell design improvements over range of mission relevant conditions (Builds 1-3)
- Support future power modeling
- 250 mA is standard baseline current
- 500, 750 mA represent maximum currents, depending on battery sizing

Representative Build 3 Performance Data for Li/CF_x D-Cell



- Example performance test data at 50 mA and 20°C discharge condition
- Superimpose periodic 250 mA pulse current on top of 50 mA baseload current, to extract cell resistance
- Nominal on-load voltage reach with little delay even at low current; de-passivation may not be required
- Testing over full range of test matrix conditions in progress for Build 3 cells

Build 3 Capacity Dispersion Data Li/CF_x D-Cells

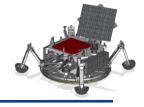


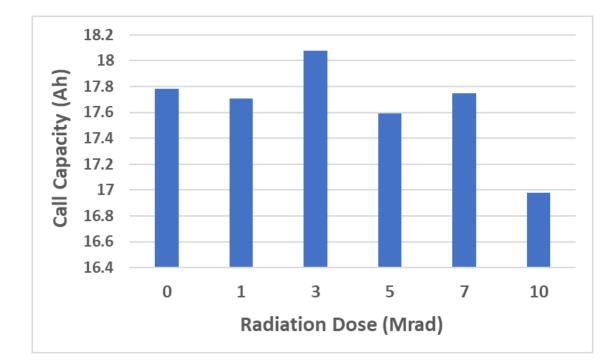
- Test 10 cells at 250 mA and 20°C to evaluate capacity dispersion
- Monitor manufacturing process
- Use to re-consider 80% DOD battery requirement, by better understanding cell-to-cell variances

Li/CF_x D-Cell Capacity Dispersion Build 1 vs. Build 3

ID	Mean Capacity (Ah)	Standard Dev.
Build 1	17.78	0.3075
Build 3	19.29	0.5876

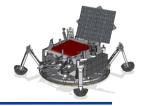
- Improved capacity for Build 3 vs. Build 1, but with wider spread in mean values
- Still a developmental cell, can improve dispersion with improved manufacturing controls following scale-up

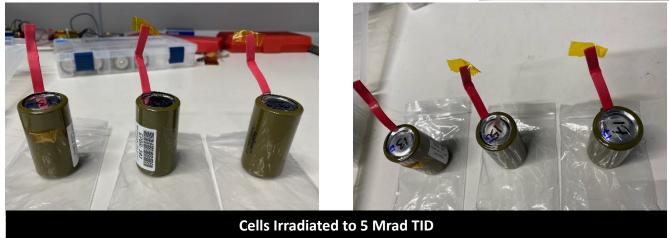

	Capacity (Ah)	Energy (Wh)	Cell Specific Energy at 20°C and 250 mA to 2V cut-off (Wh kg ⁻¹)
Baseline cell design	16.98	43.3	614
Build 1	17.78	45.1	654
Build 2	17.80	42.8	657
Build 3	19.29	49.5	695
Baseline to Build 3 Increase	+2.31	+6.2	+81


Battery Design 1: 1248 cells \rightarrow 7.7 kWh additional energy (Baseline) **Battery Design 2:** 1548 cells \rightarrow 9.6 kWh additional energy (Mission Life Extension)

Battery Design	# of Cells	Cell Mass (kg)	Battery Mass	BOL Energy
1	1248	89	119	61,855
2	1548	109	145	75,755

Updated Radiation Losses on Li/CF_x Build 1 D-Cells

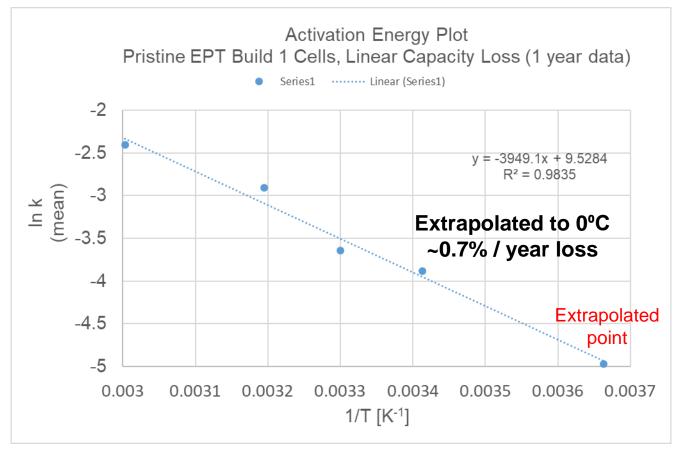


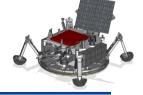

- Updating radiation deratings
- Previous assumption was radiation levels of up to 10 Mrad total ionizing dose (TID)
- Assumed pre-radiation of cells prior to launch, for planetary protection purposes (no longer required)
- Initial testing of small sample sizes (2 cells per dose condition) indicates little impact on initially delivered capacity for dose levels of 1-7 Mrad

Irradiation of Build 3 Li/CF_x D-Cells to 5 Mrad TID

- Received at JPL Build 3 cells irradiated to 5 Mrad TID at Sandia National Lab (2X expected 2.5 Mrad mission dose)
- Visual inspection indicates no issues (no damage, electrolyte leakage or cell expansion)
- Will commence performance testing, to verify any losses at <10 Mrad dose

Storage Testing of Build 1 Li/CF_x D-Cells Initial BOL Capacity: 17.78 Ah


Storage Temperature (°C)	12 month measured capacity (Ah)	12 month capacity Loss (-Ah)	12 month % Loss	Annual % Loss at Temperature
20	17.43	0.37	2.1	2.1
30	17.33	0.47	2.62	2.62
40	16.84	0.96	5.39	5.39
60	16.27	1.53	8.60	8.60
Storage Temperature (°C)	18 month measured capacity (Ah)	18 month capacity Loss (-Ah)	18 month % Loss	Annual % Loss at Temperature
		capacity		Loss at
Temperature (°C)	capacity (Ah)	capacity Loss (-Ah)	% Loss	Loss at Temperature
Temperature (°C) 20	capacity (Ah) 17.26	capacity Loss (-Ah) 0.54	% Loss 3.1	Loss at Temperature 2.1


• Cell discharged at 250 mA at 20°C, following storage for 12 and 18 months at JPL

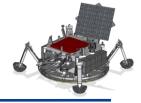
- Typically averaged over 3 cells per storage condition
- Initial storage results reported at 2021 Space Power Workshop

Arrhenius Analysis of Build 1 Cells

c(t) = c(0) - kt

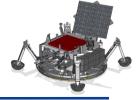
c(0): initial capacity (Ah)
c(t): capacity at time t (Ah)
k: rate constant (Ah/year)
t: time (years)

$$\ln k = \ln k_0 - \frac{E_a}{RT}$$


E_a: activation energy (J/mol)R: gas constant (J/mol-K)T= absolute temperature (K)

E_a: 31.5 kJ / mol

- Each In k vs. 1/T data point an average of 3 rate constants
- Batteries will be held at 0°C during cruise and prior to landing
- Activation energy in range of typical self-discharge processes for other battery chemistries
- Using the 2X rate increase for every 10°C increase in temperature rule-of-thumb, estimate about 0.5% annual loss at 0°C


Updated Cell Derating Considerations

Loss Factor	Value	Comments	Update
Depassivation Requirement	-3%	JPL Design Principle	Nominal on-load voltage reached without de- passivation step
80% Depth of Discharge Requirement	-20%	JPL Design Principle	Actual cell-to-cell variance is close to 10% from dispersion testing
Loss of string	~600 Wh (-1%)	JPL Design Principle	
Storage Losses	-16%	Estimate based on 2% annual loss at 20°C	Storage at 0°C could bring to ~0.5% annually and ~4% total
Other losses	-5%	Estimate based on 10 Mrad radiation dose	Likely <1% based on limited lower dose testing results

- Opportunities to reduce estimated deratings from ~45% to ~16% based on test campaign results
- Planned Build 3 testing will support further updates

- Europa Lander battery development has led to improvements in EaglePicher Li/CF_x cell capacity and specific energy
 - Additional 2.3 Ah cell capacity
 - Additional 6.2 Wh of cell energy
- Able to support Europa Lander concept baseline science mission
 - Identified opportunities for extending mission timeline and providing additional margin
 - Implemented cell improvements and improved understanding of cell deratings
- All Build 3 cells received at JPL since January 2022
- Commencing with Build 3 test campaign
 - Further benchmark cells improvements and understand cell deratings
 - Performance testing over range of rates and temperatures
 - Radiation testing
 - Thermal testing

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

This work was supported by the NASA Science Mission Directorate

© 2022. All rights reserved. The information presented about future NASA mission concepts is predecisional and is provided for planning and discussion purposes only.