

Solar Power Modules: Flex Arrays

Approved for public release; distribution is unlimited. Public Affairs release approval #:AFRL-2022-1583

© 2022 by Spectrolab, a Boeing Company. Published by The Aerospace Corporation with permission

Phil Luc, William Wise, Jesse Matossian, Rina Bardfield, Eric M. Rehder, Daniel Law, Chris Fetzer, Jim Hanley

April 27, 2022

Copyright © 2022 Boeing. Published by The Aerospace Corporation with permission.

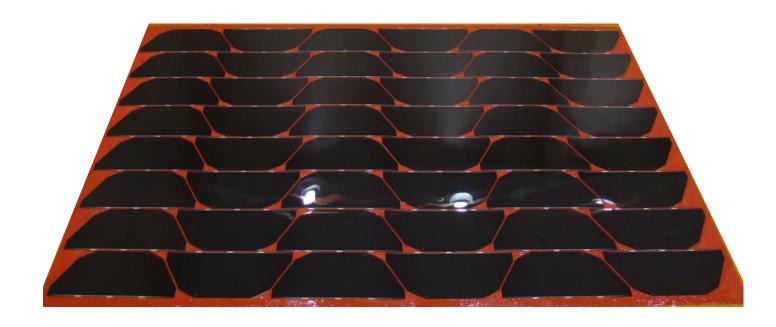
Outline

- Flex Definition
- Flex Technology Roadmap
- Flex¹ Update
 - Qual Completion
 - Production/Flight Heritage
- Flex² Update
 - Coupon testing
 - Qual Plan
 - Life Cycle Coupon
 - ESD Mitigation
 - Production Experience
- Flex on Rigid
- Conclusions

Flex Definition

- Flex¹: String bonded to a flex carrier (without circuitry)
- Flex²: Cell bonded to a flex carrier + embedded circuitry
- Flex³: Cell bonded to a flex carrier + embedded circuitry + on-orbit reconfigurable
- Flex on Rigid: Any flex configuration installed on rigid substrate

Flex Technology Roadmap



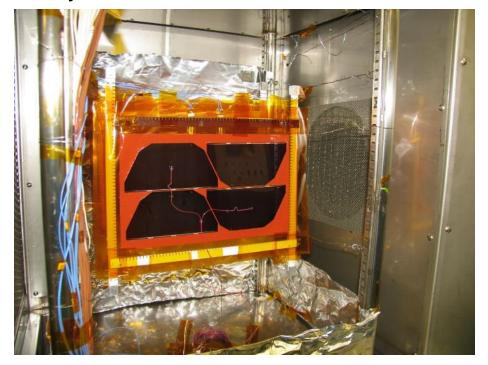
Flex ¹	2021		2022	2023	2024	2025
Flexible	Solar Power Modules On- ISS IROSA	We	're here			
Flex ²	Flex Circuit for	CIC	Connections Flex ² on			
Configurable Circuit				Flex ² on Fram	ne	
Flex³		Acti	ve Switches o	on Solar Array to	Reconfigure	
Reconfigurable Circuit in Flight						

Flex¹ Update

- Game Changing Impact on Cost
- Velocity
- Faster design time
- Faster to build
- Faster to test
- Versatility
- Rigid panel
- Flex-on-frame
- Z-fold
- Roll out arrays

Flex SPM's Are Transforming Space Power

Flex¹ Qualification



Flex¹ has series welded strings with end tabs bonded to a Kapton sheet

2 Large Coupons Completed 27,500 LEO thermal cycles from +120°C to -65°C, TVAC, and ESD

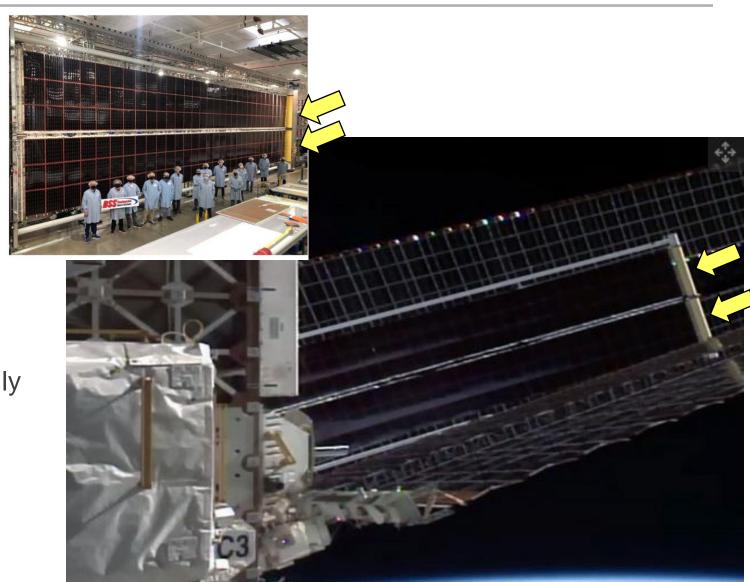
2 Small Coupons Completed 55,000 LEO thermal cycles from +120°C to -65°C

Multiple patents inprocess

Qualification Complete

Flex¹ SPM Impact on Manufacturing

- Simpler to build
 - Modular design
 - Dedicated build stations
 - Automated test stations
- Agile manufacturing (tooling/equipment) to adjust to different SPM sizes



SPM capability can be rapidly staged to support new programs

Flex¹ –High Volume Heritage

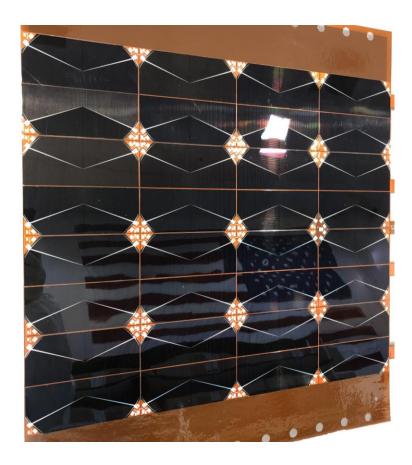
- High Volume Production
 Completed Ahead of Schedule
 (Verified Cycle Time)
- >1,153 SPMs produced, totaling over 180 kW
- Wing 1/2 installed on ISS in 6/2021
 - On-orbit electrical performing nominally
- Wings 3/4 launch ~ 10/22
- Wing 5/6 launch ~6/23

Flex² - Update

Lower Cost Design Phase

- Single structured design (multiple circuit traces layers)
- >90% packing factor

Lower Cost Solar Panel Production

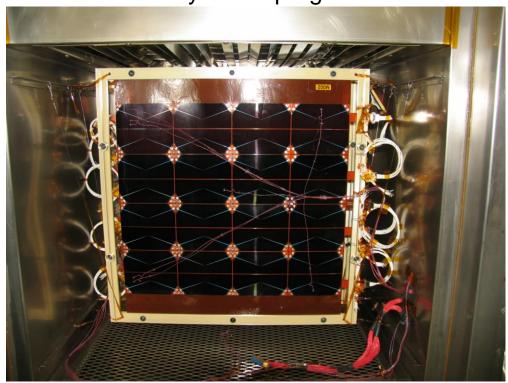

- Control schedule by decoupling solar array build from substrate delivery
- Flex circuit wiring saves over conventional round wire
- Structured design to speed inspection and testing processes
- Automation friendly

Cycle Time

 Enabling staging of prebuilt solar panels that are customized in dimension and output voltage for instantaneous delivery

Performance

- Increase in packing density and power (W/m²)
- Serpentine pattern for low cell-to-cell voltage eliminates ESD concern
- Path to reconfigurable solar array



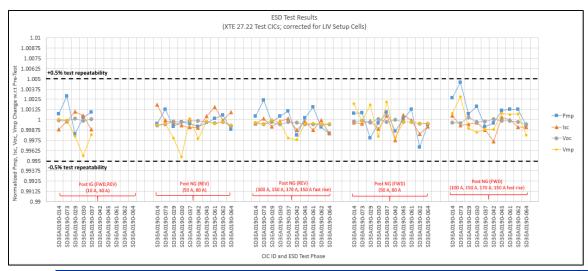
Value, Velocity, and Versatility

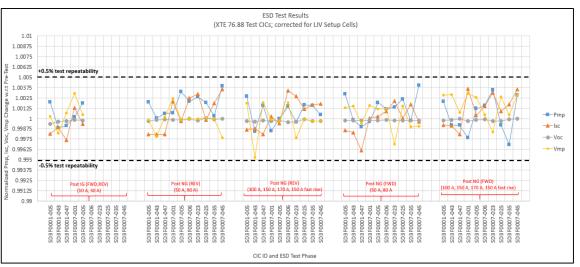
Flex² Coupon Testing

- Ambient Pressure Thermal Cycling
 - 5000+ LEO cycles in progress

Coupon To Complete 2nd Quarter

Flex² AIAA S-112A Test plan


- Humidity
- Thermal Vacuum Cycling
- Ambient Pressure Thermal Cycling
- UV Exposure
- Angle of Incidence
- Solar Absorbance
- Atomic Oxygen


AIAA S-112A Qualification To Start 2nd half of 2022

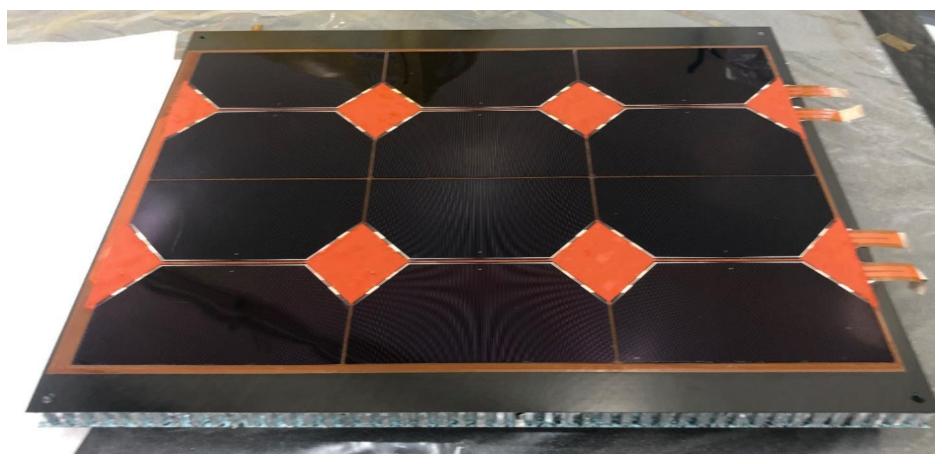
Flex² ESD Mitigation

- The greatest ESD risk to Flex solar panels is a sustained-arc discharge that can cause power reduction
- Sustained-arc mitigation techniques for Flex designs
 - Serpentine (snake-like) layout of Flex tile strings promotes immunity to sustained arcs
 - Limited grouting needed between adjacent cells of a flex tile
- Conduct pulse-injection current, ESD testing of XTE CICs representative of a generic, GEOorbit ESD environment

XTE 27.22/76.88 cm2 CICs show no measurable change (<0.5%) in Pmp, Isc, Voc, Vmp
-XTE 27.22/76.88 cm2 CICs show robust immunity to generic, GEO-orbit ESD environment

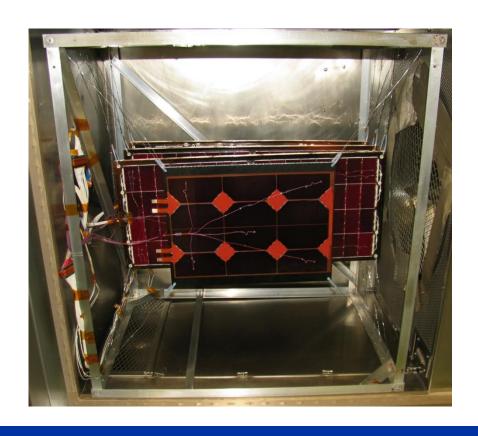
Flex² Production Experience

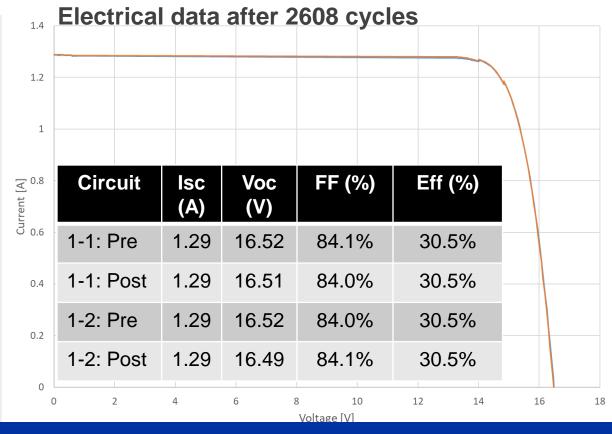
Built and delivered multiple shipsets of flight SPMs


Flex³ Progress

- Ground demonstration of concept
- Collecting flight-like testing data

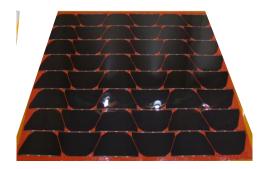
Flex²-on-Rigid (F²oR) Update


Flex² SPM successfully bonded to conventional rigid honeycomb panels


Dense Solar Cell Array On Rigid Solar Panel With No Backside Wiring

F²oR Thermal Cycling Status

Coupon has completed 2,608 cycles; +110°C to -175°C. Completed 7 cycles: +150°C to -182°C. No cracks, no delam


Flex²-on-Rigid Stable Through Thermal Cycling

Conclusions

17

- Flex products offer low cost design, low cost production, higher throughput, and higher performance
- Spectrolab has carried out/delivered high volume production of the Flex¹ product
- Extensively tested Flex² configuration
- Successful Flex²-on-Rigid build has reached 2,608 GEO thermal cycles

Acknowledgements

Thank-you to the AFRL Space Vehicles Directorate for support via contract FA9453-19-C-1000

Thank-you to Northrup Grumman

