

000

27th April 2022

STIZ

- Overview of available solutions
- Planar blocking diode AZUR/STI design
- Thermal analysis results
- Preliminary characterization test results
- Qualification and acceptance approach

Outlook

Example of available designs

- Axial diode package
- Flex package
- TO package

available solutions

Overview of

Silicon Planar solutions

Pros and Cons

- Temperature and current ratings
- Suitability for the integration on deployable structures (limited clearance)
- Design to manufacturing issues

Diode type	1NXX	Flex package	Si-C	Si Planar
lfw max [A]	3	3	5	4
Vrev max [V]	150-400	150-400	300	400
Tj max [°C]	175	175	330	160 (TBC)
Cj-substrate [k/W]	30	5	20	5

Part:	Length/mm	Width/mm
Cell	78	39
Diode	6,5	6,5
Bus Bar	39	6,5
Panel	84,5	52

Blocking diode configurations:

Side view:

Top view:

Part:	Length/mm	Width/mm	
Cell	123,5	58,5	
Diode	19,5	6,5	
Bus Bar	26	6,5	
Panel	123,5	71,5	

Boundary Conditions:

- 90° SAA
- Adiabatic panel rear side
- Environment: (worst hot assumptions)
 - Solar flux: 1423 W/m²
- Diode Dissipation (@0.5A) \rightarrow

Temp. [°C]	Voltage Drop [V]	Power (W)	$(@1 \ A\Delta) \rightarrow$
-40	0,78	0,39	
-25	0,74	0,37	
0	0,69	0,35	
25	0,64	0,32	
50	0,59	0,30	
75	0,54	0,27	
100	0,48	0,24	
125	0,44	0,22	
150	0,39	0,20	
160	0,37	0,19	
200	0,29	0,15	
300	0,09	0,04	

Temp. [°C]	Voltage Drop	Power (W)
-40	0,83	1,16
-25	0,8	1,12
0	0,76	1,06
25	0,71	0,99
50	0,66	0,92
75	0,62	0,87
100	0,58	0,81
125	0,54	0,76
150	0,50	0,70
160	0,48	0,67
200	0,41	0,58
300	0,24	0,34

Sensitivity Parameters:

- Diode top surface (cover glass = SSM)
- Bus bar top surface (w & w/o cover glass = SSM)
- Conductive coupling Diode-Panel FS
- Conductive coupling Busbar-Panel FS
- Current @ diode
- Panel facesheet conductivity (in-plane FS conductivity: 46W/m/K (STI substrate design)

Baseline + Sensitivities										т	emperatur	re /°C			
Load Case #	Diode Top Surface	Bus Bar Top Surface	Bus Bar Top alpha	Bus Bar Top epsilon	Conductor Busbar - FS	Conductor Diode - FS	Current @ Diode	Diode Dissipation	Diode 1	Diode2	Diode 3	Diode 4	Busbar (max)	Cell	FS (max. @top, exposed)
14	SSM (0.2/0.8)	Ag	0,2	0,02	1x270um RTV Dot/Face	Full diode area bond	0.5A	Nominal	127,6	119,5	125,3	117,9	126	117 to 121	124,4

Load ase #	Diode Top Surface	Bus Bar Top Surface	Bus Bar Top alpha	Bus Bar Top epsilon	Conductor Busbar /QuadDiode- FS	Conductor Diode - FS	Inter- connects	Diode 1&3	Diode 2&4	QD 1&2	Current @ Diode	Diode Dissipati on	Diode 1	Diode2	Diode 3	Diode 4	Busbar (max)	Cell	FS (max. @top, exposed)
Baseline + Sensitivities																			
1b	SSM (0.2/0.8)	Ag	0,2	0,02	1x270um RTV Dot/Face	Full diode area bond	Yes	On	Off	Off	1.4A	Nominal	139,9	124,7	138,2	123,0	131,6	122 to 128	132,8
	SSM (0.2/0.8)	Ag	0,2	0,02	1x270um RTV Dot/Face	Full diode area bond	Yes	1&4 Off	2&3On	Off	1.4A	Nominal	124,7	140,0	140,0	124,5	131,1	124 to 128	133,0

- Sensitivity analysis:
 - Bad coupling between diode and substrate (> 80K)
 - Reduced substrate in plane thermal conductance (5 -10K)
 - Increased diode radiative surface (5 -10K)
 - Influence of the coverglass (SSM) (3 -5K)
 - Influence of the interconnects (3 -5K)

Calibration phase

- Forward bias pulsed and reverse bias continious mode measurements at
 - temperatures:

T1: -150°C (-0 /+5°C)
T2: -130°C (-0 /+5°C)
T3: -100°C (-0 /+5°C)
T4: -40°C (-0 /+5°C)
T5: -25°C (-0 /+5°C)
T6: 0°C (-0 /+5°C)
T7: 50°C (-0 /+5°C)
T8: 75°C (-0 /+5°C)
T9: 100°C (-0 /+5°C)
T10: 125°C (-0 /+5°C)
T11: 160°C (-0 /+5°C)

- Forward bias continious and pulsed conditions compared to identify heating effect of measurement
- Two different pulse durations were investigated to identify heating effect during measurement (Azur Space reported a similar issue found during preliminary tests)

Forward bias characterization

 Continuous forward biasing of blocking diodes min. 5 minutes until stabilization of V_{FWD} at temperatures

T12:-150°C (-0 /+5°C)
T13: 75°C (-0 /+5°C)
T14: 100°C (-0 /+5°C)
T15: 125°C (-0 /+5°C)
T16: 160°C (-0 /+5°C)

- Comparison of parallel vs single diode behaviour
- Evaluation of the diode juncion temperature by comparing the forward voltage with the calibration curves previously taken

Results of first TV tests confirmed that

- 230µm thickness (about cell thickness) results in sufficient heat spreading function, even if one of the 2 parallel diodes have failed. Nevertheless, thermal design and fatigue lifetime of a diode is just qualified with 2 active diodes while targeting robust margins
- Under extreme hot temperatures (150°C housing, about +5/+10°C on the junction at 0,7 and 1,4A) for a single diode the voltage drop of a parallel diode assembly was measured below 0.36 V at a max current of 1.4 A (corresponding to a half pipe 3G30 cell with about 80 cm²), resulting in a PDA thermal dissipation of < 0.5 W

Diode rating

Likely higher than the announced 150°C junction temperature

Diode configuration

- Single diode compatible to large cell power dissipation
- Planar blocking diode has the advantage of reduced operational temperature, hence improve reliability

Overall diode performances

- Sufficient to cover a wide range of missions
- Lifetests should be performed asap in order to increase confidence

Design and qualification standard coverage

- European E-20-08 is currently under revision to incorporate novel blocking diode designs
- ESCC-5000 and ECSS guidelines were used to define a suitable test approach
- The heritage cumulated in the last 20 years on the Silicon planar bypass diode was as well considered
- Similar qualification approach as followed on Si planar bypass diode

Acceptance testing approach

- Early screening at wafer level
- High temperature forward and reverse testing on 100% of the devices (high temperature reverse bias)

Qualification subgroups

- Bare diode (with interconnectors for easying the electrical contact)
- Blocking diode assembly (planar diode assembly PDA)

Subgroup	Specimen q.ty	Test scope	Test hints
O group 1 bare diodes, group 2 blocking diode assemblies	Group 1 20 + 5 spare Group 2 20 + 5 spare	Extended storage simulation	HT1: 30 days, 60 °C, ≥ 90 %RH CY: 640 cycles from -80 °C to +150 °C IA: 45°: ≥ 5 N
V Bare diodes plus front and rear side interconnects	20 + 5 spare	Long duration life test	Power burn-in Tjunction = 160 °C, Duration: 96 h, IFwd = 4 A High temperature Reverse burn-in Tjunction = 160 °C, Duration: 200 h, VRev = 300 V Long duration life test 4000 hrs @ 175°C & 185°C (50% -50%)
C group 1 bare diodes, group 2 bare diodes plus front and rear side interconnects	Group 1 24 + 6 spare Group 2 24 + 6 spare	Radiation testing	Power burn-in Tjunction = 160 °C, Duration: 96 h, IFwd = 4 A High temperature Reverse burn-in Tjunction = 160 °C, Duration: 200 h, VRev = 300 V Temperature behaviour & Temperature robustness Total Dose radiation testing Ionising radiation (Co60) 50 Mrad; Non ionising (electrons): 1MeV
A bare diodes plus front interconnector	20 + 5 spares	Contact Adherence front	Surge test: 10 pulses @ Imax Human body ESD 12 kV single and multi-pulse CY 640 cycles from -80 °C to +150 °C IA 45°: ≥ 5 N
E bare diodes plus front, rear interconnector and coverglass	20 + 5 spares	Contact Adherence rear	Surge test: 10 pulses @ Imax CY 640 cycles from -80 °C to +150 °C IA 45°: ≥ 5 N

27.04.2022

© 2022 by STI Published by The Aerospace Corporation with permission

Applicability of the Si planar blocking diode solution

- Depending on the available area surrounding the diode and in-plane dissipation
- Suitable for deployable rigid arrays
- To be further assessed for flexible roll out structures
- Close to the limit for adiabatic mounting

Running qualification activities

- Full qualification running in the frame of ESA PLATO PVA (L2 adiabatic)
- Delta qualification foreseen for covering standard LEO and GEO environments

Flight model implementation

- Under qualification in the frame of ESA PLATO mission (expected launch date on 2026)
- Baseline for ESA Copernicus missions managed by STI (expected launch dates from 2026 on)

In orbit heritage

A first planar blocking diode concept is flying since mid-2019 on board of YORK SA (8x8 TJ cells)

AZUR Space GmbH

- Benjamin Hagedorn
- Sascha Van Riesen
- Jürgen Schneider
- Bernd Spangenberg
- Patrick Strässer
- Ivica Zrinscak

SpaceTech GmbH

- Arif Sinan Alagöz
- Andrea Albertin
- Anne Feiri
- Mario Gentner
- Lukas Hägele
- Ignacio Martinez
- Henning Kaufer

European Space Agency

- Christian Brandt
- Gianfelice D'Accolti
- Emilio Fernandez
- Silvia Massetti

SpaceTech GmbH

- Systems
- Instruments
- Equipment

Seelbachstr. 13 D-88090 Immenstaad Tel: +49 7545 932 84 86 www.spacetech-i.com

0000