

TOLEDO

MULTI-JUNCTION THIN FILM PV FOR SPACE POWER GENERATION Space Power Workshop, April 25-29, 2022

Robert Collins, Michael Heben, Yanfa Yan, <u>Randy</u> <u>Ellingson</u>, Nikolas Podraza, Adam Phillips, Zhaoning Song, Jacques Amar, and Sanjay Khare

The University of Toledo Toledo, Ohio

This material is based in part on research sponsored by Air Force Research Laboratory under agreement # FA9453-21-C-0056. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Distribution is unlimited. Public Affairs release approval # AFRL-2022-1189.

- Introduction to UToledo's Wright Center for PV Innovation and Commercialization (PVIC)
- Thin Film Space PV R&D at PVIC
- Next Steps for TF Space PV
- Conclusion

PVIC – HIGH IMPACT PHOTOVOLTAICS R&D

- 20,000 sq. ft. laboratory R&D facility, addressing basic science through commercial deployment
- > 50 people: faculty, research professors, staff, and students
- Key Technologies (UToledo)
 - CdTe (20%, back-illuminated at 8 %)
 - Perovskite (23.2%, tandem cell 23.4%)
- Numerous industry and national lab partners
- Leadership in Two Major Technology Consortia

Selected Recent Funding Awards		www.usa-cd	te.org	www.usa-perovskites.org
Year	Sponsor	Partners	Subject	
2021	AFRL/USSF (Space Vehicles)	UT (NASA, AFRL)	PV Sheets Space-Based Solar Energy Harvesting	
2019	AFRL (Space Vehicles)	UT (NASA, AFRL)	Low Cost Flexibl	le Tandem Space Solar Cells
2019	DOE (Solar Energy Technology)	NREL, First Solar	Perov	vskite PV Stability
2019	DOE (Solar Energy Technology)	CSU, NREL, First Solar, UIC	CdTe	e PV Technology

THIN FILM PV'S ROLE IN SPACE

- Thin film PV technology has reached efficiencies in the range of 20% - 25%, and have been demonstrated at the 100 cm² size range.
- Applications such as SBSP call for larger arrays
- TF PV offers the possibility of stowability, lower
 costs, and high specific power (both W/kg and W/m²)
- Such space arrays are a natural place for TF PV

Materials innovation and the level of understanding make TF tandem cells a real possibility, with the potential for efficiencies of 30% and cell/module specific powers of 10 kW/kg.

HIGH SPECIFIC POWER CdTe PV DEVICES ON FLEXIBLE SUBSTRATES

Typical CdTe devices grown on 3.2 mm glass can achieve efficiency of 20% (AM1.5) → Glass makes devices too heavy for space applications Move to thinner, lighter substrates

→ Y-stabilized ZrO (YSZ), highly flexible ceramic substrate with high temperature stability

Example: CSS CdS/CdTe on 20 µm thick 3 mol % Y (3YSZ)

Substrato	20 µm	3.2 mm
Substrate	3YSZ	Tec™ 15M
Efficiency	11.2 %	20.0%
Specific Power W/kg	6,300	325

Higher specific powers by:

After preliminary demonstration, there are several routes to increase efficiency to 20%.

High temp deposition Replace CdS with (In_xGa_{1-x})₂O₃

NEW CLASS OF TUNABLE EMITTERS

- Full range of compositions from In_2O_3 to $Ga_2O_3 e.g. (In_xGa_{1-x})_2O_3$
- Relevance to tandem device development
- Straightforward and robust fabrication

Proper band alignment at front contact for reduced recombination \rightarrow Higher V_{oc}

For $CdSe_xTe_{1-x}$:

Emitter Bandgap / In Fraction

("IGO")

Bandgap from 3.30 - 4.77 eV Can dope with SnO₂/ITO target

CdTe CELLS ARE RADIATION HARD

- CdTe device design
- 60 x 60-mm w/ 100 μm cover glass

D. A. Lamb et al., **Thin film cadmium telluride solar cells on ultra-thin glass in low earth orbit -- 3 years of performance data on the AlSat-1N CubeSat mission**, *Progress in Photovoltaics* (2021), DOI: 10.1002/pip.3423

FLEXIBLE PEROVSKITES FOR SPACE

THE UNIVERSITY OF

- Demonstrated >23% efficient perovskite solar cells ۲ on rigid glass substrates.
- Demonstrated ~18% efficient perovskite solar cells ٠ on flexible lightweight plastic (PET) substrates.
- Demonstrated >18% efficient bifacial perovskite ٠ solar cells with a bifaciality factor of 96%.

Bifacial perovskite solar cells

Spiro-OMeTAD 16 Perovskite

Au

ITO

Time (s)

← SnO₂

500 nm

80

100

Perovskite solar cells on a flexible plastic substrate

ACS Energy Lett. 2, 2118 (2017). Solar RRL 3, 1900078 (2019).

Sustainable Energy Fuels 5, 2865 (2021). Adv. Mater. 34, 2196805 (2022).

Perovskite solar cell on a rigid glass substrate

HIGH EFFICIENCY PEROVSKITE TANDEMS

- Perovskite/perovskite thin-film tandem solar cells
 - 1.75-eV wide-bandgap Pb perovskite
 - 1.25-eV low-bandgap Sn-Pb perovskite
- Demonstrated >23.3% efficient perovskite/perovskite tandem solar cells on rigid glass substrates.
 - Once the best in the world (2019)
- Demonstrated >21% efficient perovskite/perovskite tandem solar cells on flexible lightweight plastic substrates.
 - A high specific power of > 850 W/kg

Flexible perovskite/perovskite tandems on lightweight PET substrates

High efficiency perovskite/perovskite tandem solar cells

Nat. Energy 3, 1093 (2018). *Science* 364, 475-479 (2019). *Nat. Energy* 5, 768–776 (2020).

SCALING TOWARDS PV SHEETS

- Demonstrated >15% efficient perovskite mini-modules, ~100 cm² area using scalable deposition methods.
 - Slot-die coating, blade coating, evaporation.
 - Perovskite films are processed in ambient.
 - Glass-glass encapsulation with edge sealing.

UT module outdoor test @ NREL

Climate control room

Perovskite solar modules encapsulated in a 6" by 6" package

PEROVSKITE CELL RADIATION RESILIENCE

Control: ambient

- Irradiated cells retained high V_{oc} and FF after • high-fluence electron radiation.
- The pronounced loss in J_{sc} is mainly due to • the glass discoloration.
- Potential for perovskite space PV -- if stable ٠ perovskite compositions and space-suitable substrates are employed.

No barrier

SiO₂ Au Spiro Perovskite SnO₂ FTO Glass

In collaboration with NASA Glenn Research **Center and Naval Research Laboratory**

e-beam radiation 20 (mA/cm²) Spiro-OMeTAD Perovskite SnO₂/C₆₀-SAM FTO Reverse / Forward Scans Glass 0.7 0.8 0.9 1.0 1.1 1.2 0.3 Voltage (V 90 80 80 70 (%) 60 60 nittance EQE (%) 50 Transn 40 Contro 20 Contro Low e-beam Low e-beam: 10^{13} e/cm² Low e-bean High e-beam High e-beam: 10^{15} e/cm² 350 400 450 500 750 800 850 350 400 550 700 450 750 500 600 650 700 Wavelength (nm) Wavelength (nm

J. Phys. Chem. C 124, 1330–1336 (2020).

Perovskite solar cells after electron beam radiation

NOVEL ABSORBERS

- Antimony chalcogenide
 - Earth-abundant, low toxicity, low-cost
- Demonstrated >8.5% efficient low-cost antimony selenide (Sb_2Se_3) solar cells.
 - Prepared by scalable close space sublimation
 - One of the best efficiencies for this technology
- Developed a hydrothermal methods to prepare 6% Sb_2S_3 and >8.4% efficient $Sb_2Se_{3-x}S_x$ solar cells.
 - Low-cost solution materials and processing

Sb₂Se_{3-x}S_x prepared by

hydrothermal growth

Crystal structure of 1D Sb₂Se₃

THE UNIVERSITY OF

12

Sb₂Se₃ prepared by close-space sublimation

Adv. Funct. Mater., DOI:10.1002/adfm.202110032 (2021). ACS Appl. Energy Mater. 4, 4313–4318 (2021).

THZ RANGE ELLIPSOMETRY AND OPTICAL HALL EFFECT MEASUREMENTS

Determine charge carrier transport properties of epitaxial III-V compounds in multilayer stacks and component layers in perovskite PV

Demonstrated sensitivity to a wide range of transport properties for wafer (Si), epitaxial (InGaAs, InAlAs), polycrystalline (hybrid organic-inorganic perovskites, CdTe, CIGS) semiconductors, transparent conducting oxides (ITO, AZO, ZnO), and electron/hole transport layers (PEDOT:PSS)

Device	Layers	Mobility	Carrier concentration
		μ(cm²/Vs)	<i>N</i> (cm⁻³)
	InGaAs	9978 ± 130	$(1.52 \pm 0.01) \times 10^{17}$
III-V	InAlAs	4435 ± 312	$(5.3 \pm 0.3) \times 10^{16}$
Porovelvito	ITO	32.7	$(2.8 \pm 0.6) \times 10^{20}$
PEIOVSKILE	PEDOT:PSS	0.7	$(2.6 \pm 0.4) \times 10^{22}$
	Perovskite	2.5	$(15 \pm 0.1) \times 10^{18}$

LED SOLAR SIMULATORS -- AMO CALIBRATION

Measure each LED source at several intensities

Minimize the sum of squared differences, estimated vs. reference spectra, by multi-start global minimization algorithm

Use bilinear interpolation to construct spectrum based on each source's intensity

S-111A QUALIFICATION

UT
TOLEDO

	S-111A Qualification	In-house Testing Capability
1	Solar cell Weld/Solder	N/A (for CdTe & perovskites)
2	Solar cell integration	N/A
3	Cell-level humidity *	Possible
4	Electron radiation	Partnerships
5	Proton radiation	Partnerships
6	Bend test	Can be added in next 6-12 months

	tests (AM0)	Capability
7	Mechanical strength	N/A
8	Light J-V at different T	Available
9	Dark J-V	Available
10	QE	Available
11	Capacitance effects	Available
12	Electrostatic Discharge (ESDS)	-
13	Accelerated Life Test*	Possible

In-house Testing

S-111A Qualification

Notes: 3. Cell Level Humidity Test: 60 days at $95 \pm 5\%$ RH at 45° C

8. Light JV at different T: Part 1: Measure Isc, Voc, Vmp, Imp, Pmp and the entire I-V curve between -150°C and 150°C in 20°C increments on cells with no fluence; Part 2: I-V after 1 MeV electron fluences of 1 x 10¹⁴, 1 x 10¹⁵, and 1 x 10¹⁶

11. **Capacitance effects:** Characterize solar cell capacitance at room temperature from 10 Hz to 1.5 MHz under simulated AM0 irradiance and spectrum at Vmp and Voc

13. Accelerated life test: develop reliability estimates by characterizing the Mean Time to First Failure (MTTFF), and the Failure in time (FIT) rates of solar cells at 50°C, 80°C and 110°C (not much mentioned after this test)

PVIC – KEY FACULTY

Robert Collins

Scientific Director, NEG Endowed Chair in Photovoltaics, Distinguished University Professor

Michael Heben

Managing Director, McMaster Chair in Photovoltaics

Yanfa Yan

ORSP Chair in Photovoltaics, Distinguished University Professor

Randy Ellingson

PVIC Chair in Photovoltaics

Nikolas Podraza

Advanced optical characterization of solar cells

Research Faculty -- essential: Adam Phillips Zhaoning Song Shan Ambalanth Ebin Bastola