

3 MeV Proton Irradiation Study of Ultra-thin GaAs Solar Cells

Larkin Sayre¹, Armin Barthel¹, Andrew Johnson², Louise Hirst^{1,3}

¹Department of Materials Science & Metallurgy, University of Cambridge, UK ²IQE plc., Cardiff, UK ³Department of Physics, University of Cambridge, UK

39th Space Power Workshop, April 26 - 29 2022

© 2022 by the University of Cambridge. Published by The Aerospace Corporation with permission.

Overview

- Background
- Device design
- Fabrication process
- Results
 - Pre-exposure electrical characterisation
 - 3 MeV proton irradiation
- Conclusions
- Future work

- Outside of the Earth's protective atmosphere there are regions with high levels of damaging radiation
- Satellite mission lifetimes are limited by radiation damage of solar arrays
- Radiation tolerant solar cells could open up currently inaccessible orbits and space missions

Background

Key metrics/attributes of space photovoltaics:

High specific power

Radiation tolerance

Flexible form factors

Background - Ultra-thin solar cells

- Ultra-thin (<100 nm absorber layer) solar cells have shown intrinsic radiation tolerance¹
- High transmission losses need to be mitigated
- Previous studies have achieved 19.9% AM1.5 efficiency for a 205 nm GaAs absorber layer with an integrated light-trapping layer²

[1] L. C. Hirst *et al.*, "Intrinsic radiation tolerance of ultra-thin GaAs solar cells," *Appl. Phys. Lett.*, 2016.
[2] H-L. Chen *et al.*, "A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured backmirror," *Nature Energy*, 2019.

Ultra-thin solar cells

Goal: Boost absorption while maintaining radiation tolerance through the use of a nanophotonic lighttrapping layer

[1] L. C. Hirst *et al.*, "Intrinsic radiation tolerance of ultra-thin GaAs solar cells," *Appl. Phys. Lett.*, 2016.
[3] M. Turowski *et al.*, "Simulating the Radiation Response of GaAs Solar Cells Using a Defect-Based TCAD Model," *IEEE Trans. Nucl. Sci.*, 2013.

Table 1: Layer structure of ultra-thin cells as grown by molecular beam epitaxy

Layer	Material	Dopant	Doping density (cm ⁻³)	Nominal thickness (nm)	Measured thickness (nm)
n-type contact	GaAs	Si	5x10 ¹⁸	300	318
Hole barrier	In _{0.47} AIP	Si	5x10 ¹⁸	20	17
n-type absorber	GaAs	Si	1x10 ¹⁸	40	87
p-type absorber	GaAs	Be	1x10 ¹⁸	40	
Electron barrier	In _{0.49} GaP	Be	5x10 ¹⁸	20	19
p-type contact	GaAs	Be	1x10 ¹⁹	25	25
Etch stop layer	InAIP	Be		150	145
Buffer	GaAs	Be		300	
Substrate	p-GaAs				

Not drawn to scale

7

Results - Pre-exposure electrical characterisation

[4] S. Suckow, 2/3-Diode Fit (2014). http://nanohub.org/resources/14300.
[5] H-L. Chen *et al.*, "A19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured backmirror," *Nature Energy*, Sep. 2019.

Results - 3 MeV proton irradiation

[3] M. Turowski *et al.*, "Simulating the Radiation Response of GaAs Solar Cells Using a Defect-Based TCAD Model," *IEEE Trans. Nucl. Sci.*, 2013.
[1] L. C. Hirst *et al.*, "Intrinsic radiation tolerance of ultra-thin GaAs solar cells," *Appl. Phys. Lett.*, 2016.

Results - 3 MeV proton irradiation

[3] M. Turowski *et al.*, "Simulating the Radiation Response of GaAs Solar Cells Using a Defect-Based TCAD Model," *IEEE Trans. Nucl. Sci.*, 2013.
[1] L. C. Hirst *et al.*, "Intrinsic radiation tolerance of ultra-thin GaAs solar cells," *Appl. Phys. Lett.*, 2016.

Results - 3 MeV proton irradiation

Conclusions

- High levels of radiation tolerance when exposed to high fluences of 3 MeV protons
- Excellent electrical performance: recombination currents and parasitic resistances
- Pathway to 16% AM0 efficiency with nanophotonic light-trapping layer⁶

On-wafer

Off-wafer with planar Ag mirror

[6] L. Sayre *et al.*, "Ultra-thin GaAs solar cells with nanophotonic metal-dielectric diffraction gratings fabricated with displacement Talbot lithography," *Prog. Photovolt.*, 2022.

- Integrating nanophotonic light-trapping layer
- Anti-reflection coatings
- Optimisation of bonding process
- Further irradiations at different energies

Thank you for your attention!

Thanks also to: Melanie Tribble, Abbie Lowe, Ben Ramsay, Shak Fernandes, Patrick See, Eduardo Camarillo Abad and Phoebe Pearce for their assistance with this project

European Research Council Established by the European Commission

