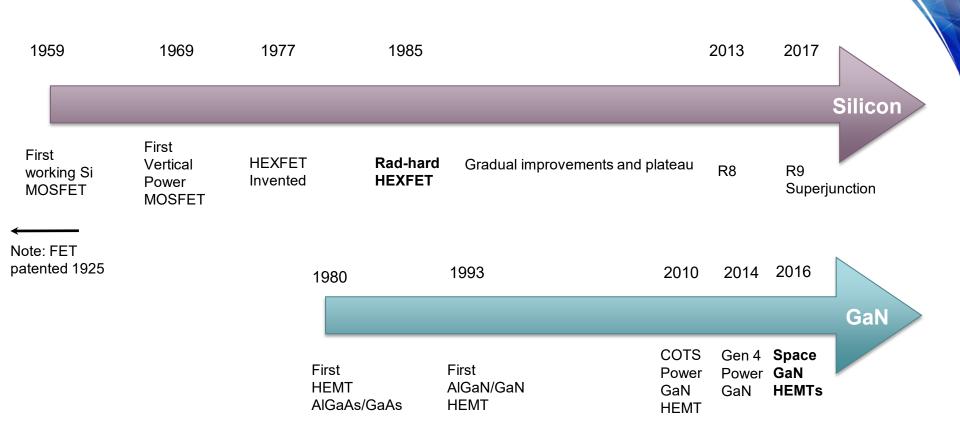
Aerospace's Experience Using GaN Power HEMTs


Christopher Le Electronics and Power Systems Department

2022 Space Power Workshop

Outline

- The past and present of power converter switch technology
- Why consider GaN HEMTs?
 - How can GaN help meet our needs?
- Plan to invest for success
 Re-tool for power prototyping
- Case studies: advantages and pitfalls that we have encountered
 - Do the benefits outweigh the learning curve?
- Plans to release guidance
 - Feedback, industry issues and needs?

The Past (Context)

The Present

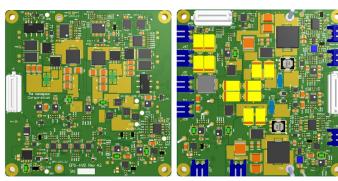
<>			🗎 digi	key.com C	1	+	<>			🗎 dig	gikey.com C	5	+
	Digi-Key Liternaus:	Products - Manufa	^{mosfet} acturers∽ Resources	۹ 📑		item(s) ~		Digi-Key		acturers∝ Resources	a 📑	Login or REGISTER ~ / 덫 0 it	
		cts > Transistors - FETs, MOSFET:	s - Single		Try the beta	🔵 Share <			ducts > Transistors - FETs, MOSFET	's - Single		Try the beta) Share 쑥
	ors - FETs, MOSFETs	s - Single				Transistors - FETs, MOSFETs - Single							
Results: 40,676 30,911 Remaining Results: 40,676 139 Remaining													
Search W	ithin Results	Q			Filters Stac	cked Scrolling	Search W	ithin Results	Q			Filters Stacks	ed Scrolling
	Packaging	Part Status	FET Type	Technology	Drain to Source Voltage (Vdss)	Cur		Packaging	Part Status	FET Type	Technology	Drain to Source Voltage (Vdss)	Cur
	Bag Box Bulk Cut Tape (CT) Digi-Reel® Strip Tape & Box (TB) Tape & Reel (TR) Tray	Active Discontinued at Digi-Key Last Time Buy Not For New Designs Obsolete Preliminary		GaNFET (Cascode Gallium Nitride FET) GaNFET (Callium Nitride) MOSET (MacK Oxdo) SIC (Silicon Carbide Junction Transistor) SIC FET (Cascode SIC/FET) SICPET (Silicon Carbide)	5 V 5 S V 5 V 8 V 9 V 10 V 12 V 14 V 14 V Min Max V €	150µA 5mA (T 10mA (13mA (14mA 20mA 20mA 25mA 30mA (25mA 30mA (Bag Box Bulk Cut Tape (CT) Dig-Reel® Strip Tape & Box (TB) Tape & Reel (TR) Tray	Active Discontinued at Digi-Key Last Time Buy Not For New Designs Obsolet Preliminary	P-Channel	GaNFET (Cascode Gallum Ninde FET) GANET (Gallum Ninde) MOSFET (Marka Oxide) Sic (Silicon Carbide Junction Transistor) Sic/ETT (Cascod Sic/ETT) Sic/ETT (Silicon Carbide)	5 V 5 S V 6 V 8 V 9 V 10 V 12 V 14 V 14 V 14 V	150µA 5mA (1 10mA (14mA (14mA 20mA 21mA (25mA 30mA (30mA (
			Clear	Clear		telp?				Clear	Clear		Culei
Stocking O In Stock Normal New Pro Apply SEARCH EN	View Prices At: [cnter Quantify Stocking Options Databaet On Stock New Product Distabaet Apply A 30,911 Remaining SEARCH EXTRY mosfet x								Environmental Options RoHS Compliant Non-RoHS Compliant	Marketplace Product			

- Near real-time power switch count: Si 30,911 and GaN 139
- But there is certainly a growing industry buzz
 - Several recent SPW presentations have described GaN power designs
 - Have you recently purchased a phone or laptop charger?
- Manufacturers have demonstrated interest in the space market
- GaN designs are flying right now (e.g. Aerocube)

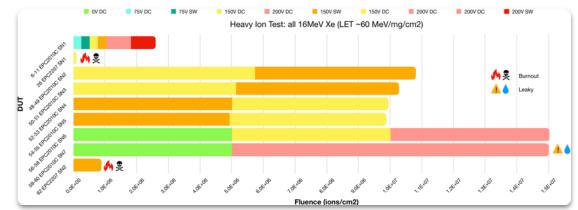
GaN remains a limited player but use is growing

Why Use GaN?

- GaN has wide bandgap, low Ron, low Qg, low mass, high Vorit, and is efficient
 - Jargon
- What are our applications?
 - Mostly DC/DC power conversion, some laser diode drive
 - Research and experiments
 - Usually short missions
 - Most space missions are LEO but there's interest in higher orbits
- What are the desirable power switch features, given our applications*?
 - Outperforms COTS silicon MOSFETs for DC/DC conversion
 - Has some inherent radiation tolerance
 - Cost effective
 - Available for delivery today
 - Easy to use
- How well does GaN meet these needs?
 - Specifically, lateral GaN-on-Si HEMTs for the near-term


^{*} Your needs may differ...

How GaN Can Help to Meet our Needs


Our needs: ٠

Enables higher frequency switching, reducing size while preserving efficiency

Application needs redundant solar array and battery converters in ~25in² (with height restrictions)

Generally TID tolerant. For SEE, there are no COTS part "guarantees" and there's variability. But certain parts can perform well in test, and drain voltage de-rating helps.

They are readily available and cost effective

Easy to use? (next page)

Mfr. Part # MOSFET 650V, 4A, Datasheet 593 Cut Tape GaN GS-065-004-1-L-TR GaN E-mode, 5x6 In Stock Systems 1:\$2.97 PDFN, Bottom-side 10:\$2.68 3.000 Mouser Part # cooled 25: \$2.53 Expected 499-GS-065-004-1-LTR Learn More 8/12/2022 100:\$2.19 @Enlarge New Product 500: View Reel 3,000:\$1.56 EPC2010C 15,691 In Stock Can ship immediately **Digi-Key Part Numbe** 917-1085-2-ND - Tape & Reel (TR) 917-1085-1-ND - Cut Tape (CT) 917-1085-6-ND - Digi-Reel® OUANTITY Anufactures EPC EPC2010C

Manufacturer Product Number Description

facturer Standard Lead Time

Detailed Descript

(7-Solder Bar) Customer Reference

a Datasheet

Datashae

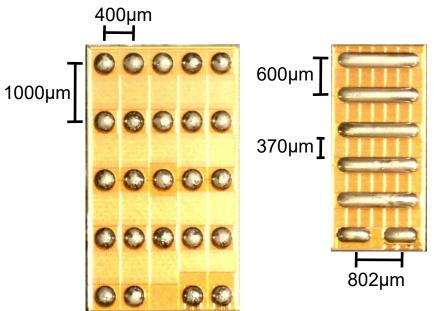
GANFET N-CH 200V 22A DIE OUTLINE

N-Channel 200 V 22A (Ta) - Surface Mount Die Outline

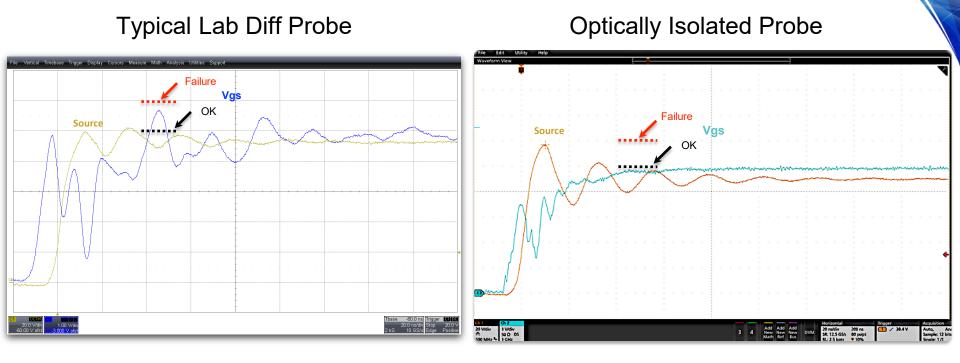
All prices are in USD

1

Cut Tape (CT) & Digi-Reel® EXT PRICE OTY UNIT PRICE \$6.56000 \$6.56


Add to Cart

Add to List

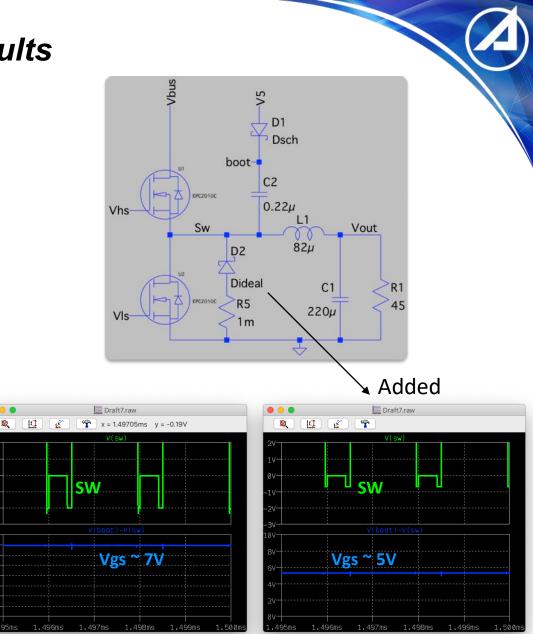

Investment: Re-tool for Assembly and Prototyping

- Some GaN HEMTs only come as passivated die
- Even basic assembly is more like soldering an FPGA than a power part
 - Ball-grid or land-grid array
- Need in-house assembly for prototyping and rework. Minimum upgrades:
 - Stencils and/or solder paste printer
 - Hot air soldering and reflow station
 - Vacuum pickup with 3-axis precision movement
 - 10-70x optical inspection microscope
- Additional considerations
 - Check your IPC-2221A specs
 - Flux cleanup
 - Underfill
 - Die chips and cracks
 - And remember that the die substrate is electrically connected to the source

Investment: Test Equipment and Education

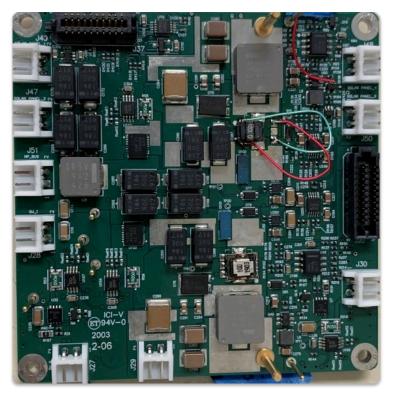
- Here's a measurement problem caused by using old probes to measure high-side gate drive
 - Inadequate CMRR: large and fast common source signal with 1V of gate-source drive margin
- Key equipment: isolated probes (voltage and CMRR), oscilloscope (bandwidth)
- Education: probing technique, making proper test points, when <u>not</u> to use the bandwidth limit and the ground lead

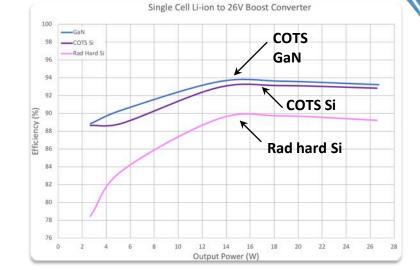
Even with good technique, old equipment can give untrustworthy results

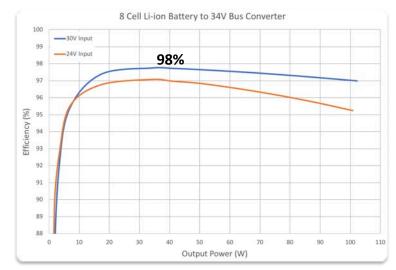

Case 1: Drop-in Replacement for Si

- With GaN HEMTs boasting multiple advantages over their Si counterparts, why not just drop-in GaN for Si?
- A 100W buck converter was designed fabricated
 - Straightforward specs: convert li-ion battery bus from 54-72V to 45V
 - Selected a synchronous half-bridge topology with GaN HEMTs
 - Eliminate reverse recovery loss and low Ron to maximize efficiency
- Very few GaN PWM chips and drivers were available at the time
 - Re-used a common PWM IC LM5116 proven in previous silicon designs

Drop-in Replacement Results

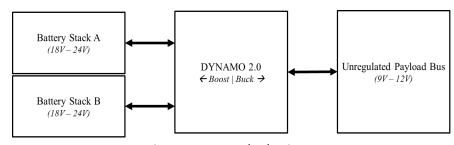

- The converter lasted 10 minutes before releasing the "blue smoke"
- Issue #1: LM5116 could not supply 5V
- Issue #2: bootstrapped high-side gate drive was poorly regulated
- Issue #3: 3rd quadrant GaN conduction during the dead time resulted in a ~2V drop, over charging the bootstrap to 7V
- Fixes: added new 5V supply, clamped the bootstrap voltage with multiple diodes, added a Schottky in parallel with the lower transistor
- Converter achieved 97% efficiency but it was not worth adding multiple extra parts
- We have seen this issue "in the wild"




GaN can be a hassle to implement without a supporting cast of parts

Case 2: Cubesat and Smallsat Boost Converters

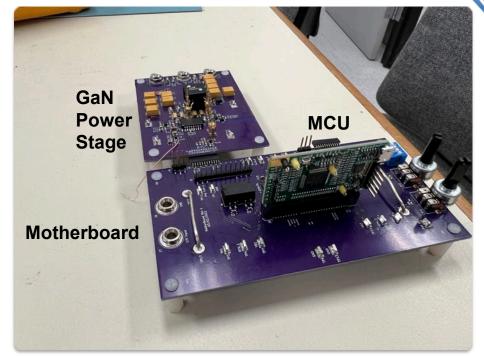
- Needed a new common boost converter
- No great integrated switch options
- High input current (~11A) in a small area
- Compared several Si MOSFETs with GaN
- Selected GaN HEMT with very low Ron spec




GaN outperformed all Si MOSFETs in our boost converters and was selected

Case 3: Auxiliary Power System "Payload"

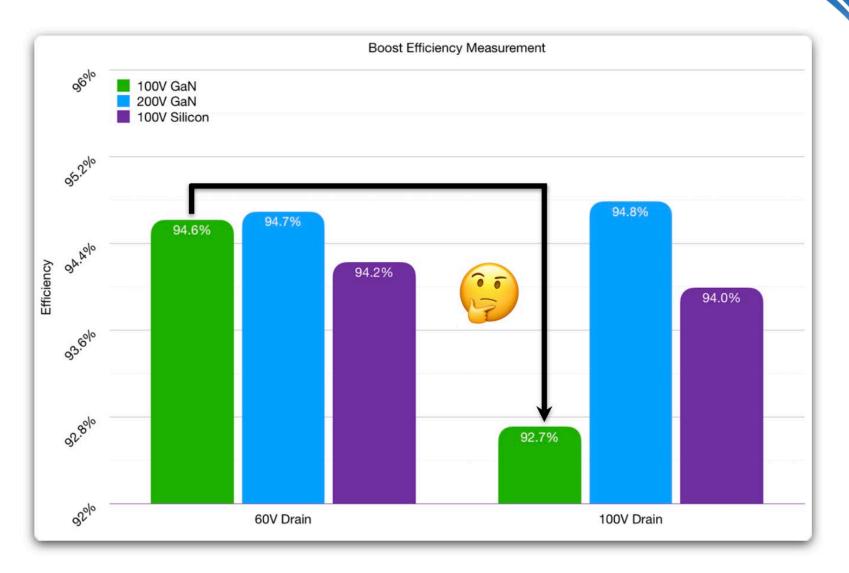
- Project Dynamo is a "payload" that supplements main satellite power
- Batteries with different chemistries can augment bus power delivery
- Constrained to 1U packaging
- Bidirectional GaN HEMTs converters with average current mode control were selected
- GaN HEMTs were chosen to help with Size Weight and Power (SWaP)
- In this case, GaN's lack of packaging was a considerable size advantage


Project Dynamo Block Diagram

GaN HEMTs allowed this project to meet its SWaP goals

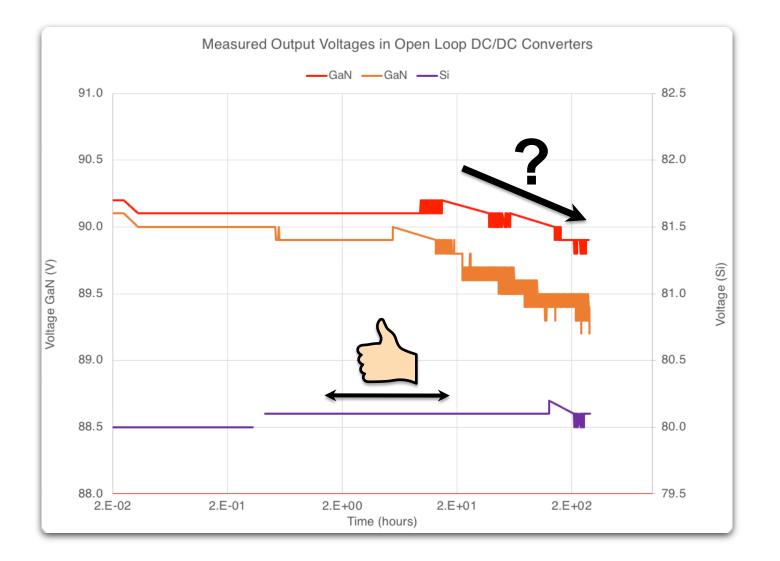
Case 4: Digital GaN Power System Development

- Programs can undergo long and costly development cycles due to challenges with unique designs
- Off-the-shelf power converters can save time for simple designs but lack features for many other applications
- Combining digital control with GaN HEMTs potentially saves development and schedule costs
- Initially, an integrated GaN power stage was selected for SWaP
- Reverted to discrete GaN because integrated stage could not provided necessary duty cycle

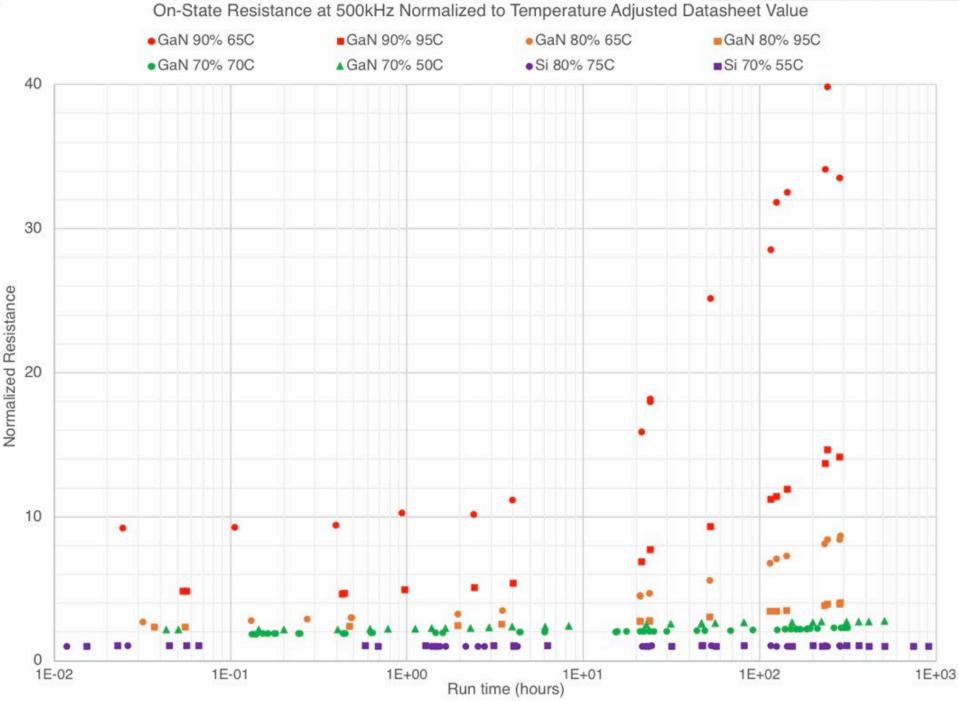

Aerospace Power System Prototype

Tradeoff between highest levels of integration and operational control

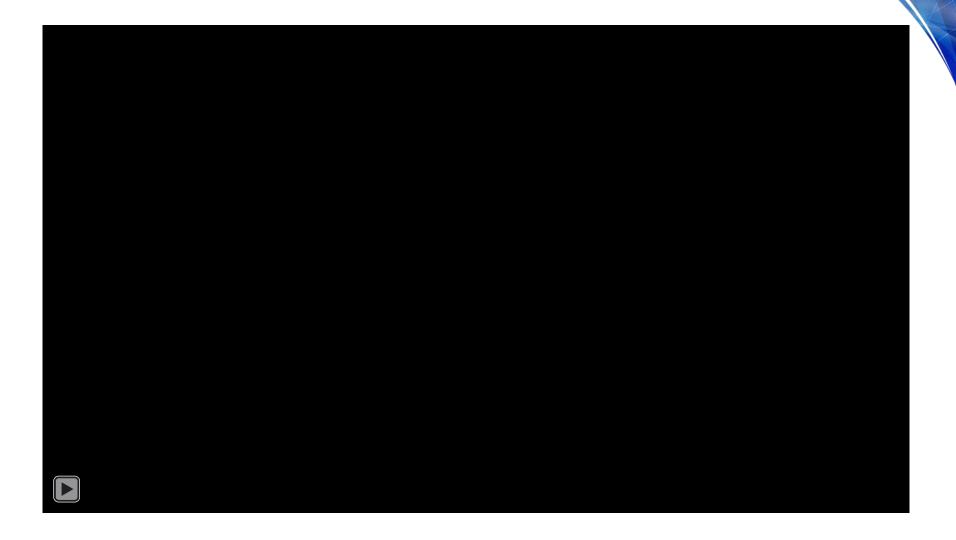
New Technology "Features" and Considerations


- Like any new technology, GaN HEMTs introduce new features. Some of the better known ones were presented earlier.
- GaN's "dynamic" features are unfamiliar to some engineers used to MOSFETs
 - Dynamic operation (i.e. switching) can result in departures from datasheet specs
 - Circuit dependent: characterize GaN HEMTs in your circuit
 - Datasheet specs usually describe static behavior
- Several difficult to explain observations led us to develop a new resistance measurement method
 - Provides a real-time view of GaN HEMT resistance while switching (dynamic Ron)
 - The next charts illustrate features related to dynamic Ron

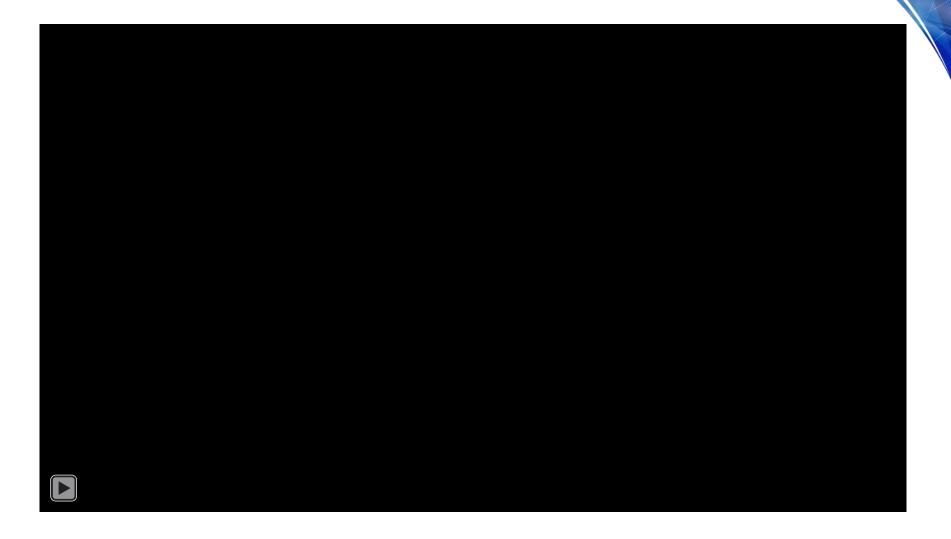
Motivation - Power Designer's Perspective



All devices used the same circuit and test conditions...


Motivation - Reliability Perspective

Why does the output voltage droop over time?



Hot to Cold Sweep (Si MOSFET)

Warm = $36m\Omega$, cold = $22m\Omega$

Hot to Cold Sweep (GaN 90% of Rated Vds)

Warm = $61m\Omega$, cold = 1.1Ω

Summary

- GaN HEMTs are exciting devices that will continue to impact space power development for some time to come
- Through several case studies, we shared the types of investment needed to successfully prototype with GaN and applications where it has made a positive impact
- New technologies have unfamiliar features, like dynamic resistance
 - Users should factor into device de-rating decisions and qual plans
- Aerospace is developing a power GaN HEMT TOR with guidance
 - Focus on physics of failure, de-rating, and qualification compared to MOSFETs
 - Effort led by Dr. John Scarpulla