
An Assessment of Cryogenic Analog Electronics for the Lunar Environment

39th Annual Space Power Workshop April 26-29, 2022

Richard C. Oeftering, Nicholas R. Uguccini, Lucia Tian NASA Glenn Research Center richard.c.oeftering@nasa.gov

Background The Extreme Lunar Environment

- Day: 100-400 K highs based on latitude
- Night: 50-100 K lows for *all* latitudes
 - Duration (non-polar): ~354 hrs (~15 Earth days)
 - Duration (polar): winter sun below horizon for ~4.5 months

Thermal model calculations of monthly & annual lunar surface temperature variations at various latitudes

Background Proposed Survival Strategy

Lunar Power Hibernation

- $_{\odot}$ Extends capabilities & duration of lunar missions
- \circ Reduces dependency on radioisotopes, pre-established infrastructure

${\rm \circ}$ Success depends on

- Cryo-tolerant Li-ion batteries: 18650 cells survive lunar night conditions
- Cryo-tolerant electronics (majority of electronics passively survive)
- Cryo-operable electronics to perform cold start and safely restore power

Hibernation Applications

Commercial Lunar Payload Services (CLPS)

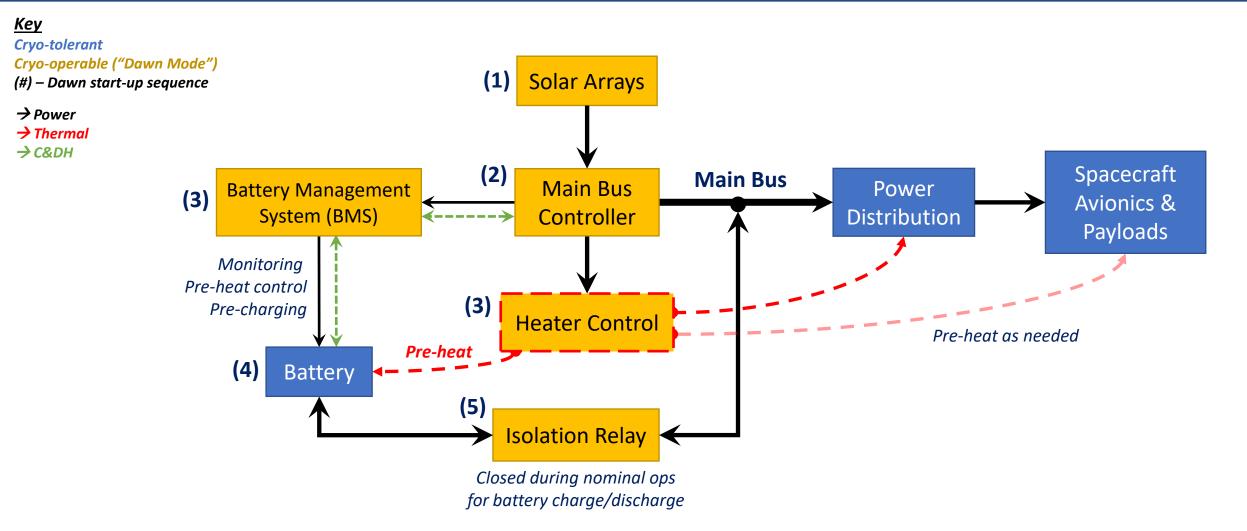
- Landers currently provide only a single lunar day of operation
- $_{\odot}$ Robotic elements of the Artemis Program

o Lunar in situ resource utilization (ISRU) systems

Survival & recovery options in contingency situations

Background Hibernation Electronics Definitions

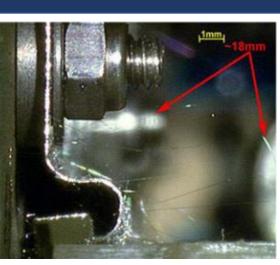
Cryo-Tolerant

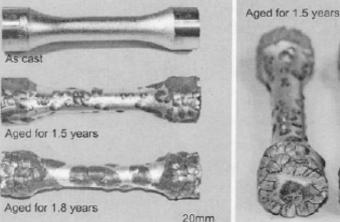

- Required for all spacecraft electronics (power, avionics, comm)
- $_{\odot}$ Must passively withstand thermal environment down to 50 K without damage
- $_{\odot}$ Can depend on manufacturing processes & materials/packaging

Cryo-Operable

- $_{\odot}$ Required for hibernation electronics that restore power at lunar dawn
- $_{\odot}$ Must start up and operate in 50-100 K lunar dawn
- $_{\odot}$ Depends on device properties & stability of interactions

Background Example Dawn Start-Up Sequence

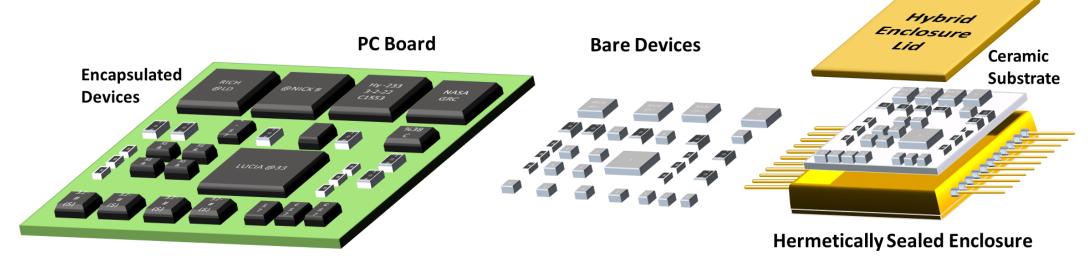



Cryo-Tolerant Electronics Circuit Packaging: Printed Circuit Board (PCB)

- Copper-clad laminate & fiberglass-reinforced plastic (FRP) have well-matched CTEs • (coefficients of thermal expansion)
- Target small boards & devices, matched CTE, mechanical compliance •
- Avoid pure tin: tin whiskers and tin pest •

Feature	Recommendation	Mitigates	
Board	Match material CTEs Minimize PCB size	PCB warping, Cu delamination, joint separation	
Joints	Use smaller boards & smaller devices (size matters)	Strain & stress due to greater tolerance of CTE mismatch	
	Limit thermal cycles below "fatigue life"	Progressive joint cracking & failure	
Plating	Replace tin plating with nickel-gold	Tin whiskers	
Soldering & Bonding	Avoid pure tin if possible; recommend Pb-Sn alloy (≥ 3% Pb) Indium is possible tin substitute	Tin whiskers Tin pest	
Coatings	Avoid thick coatings with high CTE	Thermal stress	
Encapsulation	Utilize encapsulants with matching CTE	Thermal fatigue on device wire bonds	

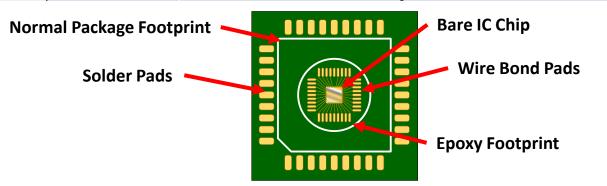
Tin whiskers: Single-crystal tin filament growths can create short circuits.



Tin pest: Tin can transform to a brittle non-metallic form between 0°C and -30°C, expanding 27% and disintegrating joints.

Cryo-Tolerant Electronics Circuit Packaging: Hybrid Microcircuit

- Commonly used in analog circuits (semiconductors & passive components)
- Encapsulated in a hermetically sealed metal enclosure
 - $\circ~$ Bare devices assembled on a low-CTE ceramic substrate
 - o Connected directly to thick film traces via wire-bond or flip-chip technique
 - $\circ~$ Reduces size and related thermal stress
 - o Eliminates thermal stress from plastic encapsulants
 - Improves thermal conductivity




Conversion of PCB to Hybrid Circuit

Cryo-Tolerant Electronics Circuit Packaging: Hybrid Microcircuit & COB

Circuit	Component	Description	Pros	Cons
	Board	Miniaturized (single high-density module); Typically ceramic	 Smaller device footprint No internal stresses from mismatched encapsulant CTE 	CostLimited number of layers
the density of	Enclosure	Metal or ceramic	Improved internal heat conductionShortened thermal paths	
Hybrid Circuit	Substrate	Ceramic preferred	CTE values tailorable	Co-fired process for traces can be more costly & difficult
	Device mounting (bare die)	Wire bonding (without encapsulant)	 Compliant connection minimizes thermal expansion stress 	Larger footprint than flip-chip
		Flip-chip – using solder bumps	Smallest footprint	More susceptible to thermal stress
Chip-on-	Device mounting (bare die to PCB)	Wire-bond or flip-chip	See above	• See above
Board	Encapsulation	Post-installation	Low-cost alternative to hybrid encapsulationDramatic size reduction	Unproven for cryo applicationsMismatched encapsulant CTE reduces life

Chip-on-Board Encapsulated

Cryo-Operable Electronics Semiconductor Devices

Device			Pros	Cons
des	P-N Junction Diode		Can be operational at lunar temperatures with proper design	 Forward voltage increases at cryo temperatures On-resistance increases below 100 K
Diod	Schottky Diode		On-resistance decreases with temperature (GaN only)	 Forward voltage increases at cryo temperatures On-resistance increases faster than P-N below 100 K (Si & SiC)
	Bipolar	Bipolar Junction Transistor (BJT)	 Increased gain at cryogenic temperatures (SiC) 	 DC gain decreases dramatically with temperature (Si) Likely unsuitable for use due to freeze-out (Si)
	Transistor	SiGe Heterojunction Bipolar Transistor (HBT)	Extreme mK performance (SiGe)Transitions from thermal to electron tunneling conductance	Significant property changes over 50-400 K
rs		Junction-Gate FET (JFET)	 Normally-on JFET performance at lunar night temperatures similar to that at room temperature (SiC) 	 Carrier freeze-out increases on-resistance as temperatures decrease past ~200 K (VJFET more susceptible)
Transisto	Field Effect	Metal Oxide Semiconductor FET (MOSFET)	 On-resistance decreases with low temperature until ~77 K (Si) Switching time improves with low temperature (Si) 	 Threshold voltage increases; breakdown voltage decreases (Si) Enhancement-mode SiC unsuitable – extreme carrier freeze-out
- Tr	Transistor (FET)	High-Electron-Mobility Transistor (HEMT)	 On-resistance/switching time improves with low temperature; breakdown/threshold voltage doesn't change (GaN) 	
		Complementary Metal-Oxide- Semiconductor (CMOS)	 Generally shares properties with Si MOSFETs 	Hot carrier injection reduces reliability
	Insulated-Gate Bipolar Transistor (IGBT)		Improved switching speed, forward voltage, & transconductance	Breakdown voltage decreasesThreshold voltage slightly increases

Cryo-Operable Electronics Passive Components

Component		Description	Pros	Cons
Resistors	Metal Film	 Resistive layer sputtered on substrate Typically nichrome	 Low TCR (temperature coefficient of resistance), tight tolerances 	
	Wire-Wound	High-resistance, high-temp wireHas inherent inductance	Low TCR, tight tolerances	
	Thick Film	 Resistive paste deposited on ceramic substrate SMT 		Sensitive to temperature
	Bulk Metal Foil	 Metal foil laminated to ceramic substrate & etched 	Self-compensated TCR	Testing needed to confirm cryo performance
Capacitors	Multilayer Ceramic (MLCC)	Capacitor with a ceramic dielectricVariety of compositions/properties	 Class I (paraelectrics): Good capacitance stability over temperature 	 Class II (ferroelectrics): Higher variability over temperature ranges
	Electrolytic	 Polarized capacitor with electrolyte cathode Produces high capacitance values 	 Solid tantalum electrolytics will operate marginally 	 Aluminum electrolytic (liquid): Electrolyte freezes at cryo temperatures Tantalum electrolytic (solid): Higher dissipation factor & ESR, lowered capacitance at higher frequencies
Inductors	Air Core	 No core material Generally lower inductance, higher saturation point 	Insensitive to temperatureWire can go superconductive	
	Solid Core	 Solid cylindrical or toroidal core Generally higher inductance, lower saturation point 		 Requires special core material tailored for low losses at cryo temperatures

Cryo-Electronics Testing Device & Circuit Testing Recommendations

Device Characterization Tests

- $_{\odot}$ Driven by modeling needs
- Assess cold-start capability
- $_{\odot}$ Be aware of superconductivity effects electron tunneling

Cryo-Tolerance Testing

- Screen legacy circuits for cryo-tolerance (tin, large devices, mismatched CTE)
- \circ Perform thermal cycling to evaluate structural integrity
- Perform pre- & post-qual functional tests
- $_{\odot}$ Use non-destructive evaluation: ultrasound & x-ray to detect hidden flaws

Cryo-Operable Testing

- $_{\odot}$ Screen legacy circuits for devices that will not operate at cryo temps
- Perform thermal cycling to simulate lunar conditions (dT/dt rate)
- \circ Demonstrate cold starts

Lunar Power Hibernation Architecture

 Cryo-operable & cryo-tolerant electronics enable robust, low-cost robotic missions to operate over multiple lunar cycles

Component Findings

- Most semiconductors can operate at cryogenic temperatures (50-100 K)
 - Carrier freeze-out & electron tunneling may be a concern
- $\circ~$ Solutions exist for most implementations of passive devices
- Circuits may require modification/compensation to span 50-400 K

Board Design Recommendations

- Minimize footprints, match CTE, avoid tin
- Conventional PCB assemblies: expect limited life
- New designs: use hybrid microcircuits
 - Improved protection, low CTE, long-term reliability

- Publish cryo-electronics design guidelines
- Continue review of academic works, including on unreported components (film caps, crystal oscillators, etc.)
- Build parts model library for simulation
- Test cryogenic operation of discrete parts
- Develop prototype cryo-circuit based on guidelines
- Conduct circuit-level testing with batteries & solar cells

Seeking collaboration opportunities!

Thanks for Listening

An Assessment of Cryogenic Analog Electronics for the Lunar Environment

Acknowledgments

Ahmad Hammoud Marcelo Gonzalez Phil Neudeck **Randall Kirschman** Akin Akturk **Rick Neufeld**

GRC LME / Environmental Effects & Coatings Branch GRC LEM / Power Management & Distribution Branch GRC LCS / Smart Sensing & Electronics Systems Branch Independent expert on extreme environment electronics **CoolCAD Electronics LLC** Omni Circuit Boards Itd. **Kurt Sacksteder & Gary Horsham** NASA GRC Center Innovation Fund (CIF)

National Aeronautics and Space Administration

Contact: Richard C. Oeftering Nick Uguccini Lucia Tian

Power Architecture & Analysis Branch NASA Glenn Research Center Cleveland, OH 44135

richard.c.oeftering@nasa.gov