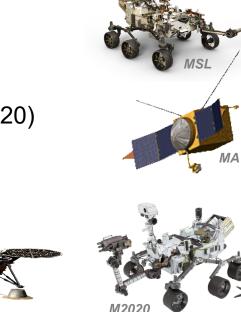


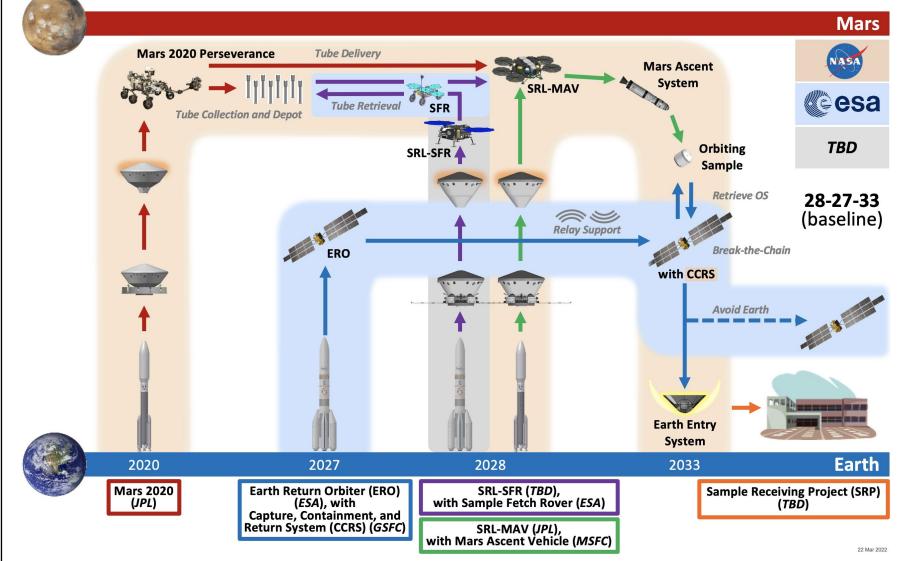
Powering Mars Exploration

Hoppy Price Jet Propulsion Laboratory California Institute of Technology April 26, 2022

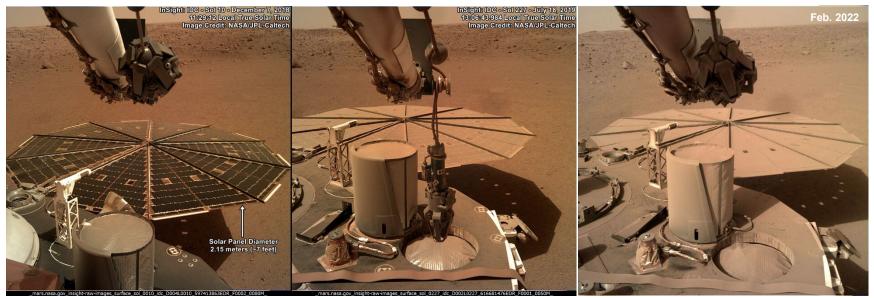

Space Power Workshop 2022 The Aerospace Corporation

© 2022 California Institute of Technology.

- Mars Odyssey 2001
- Mars Reconnaissance Orbiter 2005
- Mars Science Laboratory (Curiosity) 2011
- Mars Atmosphere and Volatile EvolutioN (MAVEN) 2013
- Mars InSight 2018
- Mars 2020 (Perseverance and Ingenuity) 2020
- Non-U.S. missions
 - ESA: Mars Express (2003)
 - ESA: Trace Gas Orbiter (2016)
 - China: Tianwen 1 orbiter and Zhurong rover (2020)
 - India: Mars Orbiter Mission (2013)
 - UAE: Hope orbiter (2020)

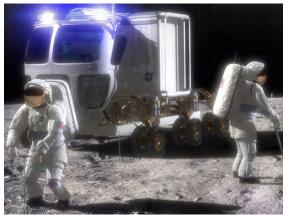

- Perseverance Rover has traveled ~10.5 km and taken 8 rock core samples which may be returned to Earth in 2033
- Ingenuity Helicopter has flown ~6.2 km in 26 flights

Mars Sample Return Planning



Pre-decisional information - For planning and discussion purposes only. Approved for public release.

- Solar array dust deposition
 - Spirit and Opportunity had lucky wind cleaning events
 - Opportunity survived for 14 Earth years
 - InSight has not been so lucky
- Limited power, high cost, and limited availability of RTGs
- Surviving the cold Martian nights (RHUs can help)



Pre-decisional information - For planning and discussion purposes only. Approved for public release.

- <u>Artemis surface systems as pathfinders for Mars missions</u>
 - Crewed ascent vehicles: typically ~ 5 kWe
 - Surface habitats: typically ~ 15 kWe
 - Crewed rovers, pressurized and unpressurized
 - Current concepts use solar power and batteries, but fuel cells or multi-kW radioisotope (~5 kWe) systems could have significant advantages
 - Drilling systems: multi-kilowatt, probably robotic
 - In Situ Resource Utilization (ISRU), probably robotic
 - Multi-megawatt power systems (e.g. fission)
 - Lunar surface periods of darkness are extremely challenging, typically
 - ~ 3 days duration at the poles and 14 days for non-polar (very cold)
- <u>Mars missions</u>
 - Similar systems and power requirements as Artemis, except that periods in darkness are limited to ~12 hours, except during dust storms
 - Surface missions longer than ~6 months need to deal with dust storms and dust deposition
 - Larger helicopters have mass and energy challenges

- Surface fission power systems would have great utility for Moon and Mars
 - High power nuclear fission could enable deep drilling operations and ISRU systems
 - Shielding, placement, and power transmission over distance are issues
- Higher efficiency solar arrays (possibly restowable) and higher density energy storage could be enabling for larger helicopters
- Solar array cleaning technologies could enable long-duration non-nuclear Mars surface power for all applications
- High efficiency dynamic conversion radioisotope power systems could be attractive options for surface habitats and crewed rovers (~5 kWe units)
 - Could also serve as reliable backup for outages of other power systems
- More affordable and more available radioisotope power could provide better options for future Mars surface systems (e.g. polar missions, cave explorers)
 - Sr 90 heat sources could be an enabling option for some applications:

		Pros	Cons
Might be optimal for crewed surface missions and rovers	Sr 90	Greater availability	~75% heavier than Pu 238 RTG
		Lower cost	Shorter half-life (29 vs. 88 years)
		No neutron emissions	Requires more shielding (β vs. α)
			Requires new design and qualification
Probably optimal for robotic planetary missions	Pu 238	Lower mass and volume	Limited availability
		Longer half-life (88 vs. 29 years)	High cost
		Easier to shield ($lpha$ vs. eta)	Some neutron emissions

- Future Mars missions, both robotic and human, have power challenges
 - New systems and technologies need to be developed and qualified (e.g. solar array cleaning)
- Human surface missions probably need more than one type of power source
 - For functional redundancy in addition to block redundancy
 - Power sources will likely be phased over time, with later missions needing higher and longer-term power
 - Mobile systems will likely require different power sources than stationary systems
- Identify backup and descope options, in the event some of the new power technologies encounter development issues
- Keep looking at alternative options (e.g. Sr 90)