Adiabatic Power Conversion (APOL) Technology Flight Insertion Status

March 20, 2019

Dong Tan, Henry Kuo, Tim Hsia and Henrik Gevorkyan

Approved for public release; NG 17-2595 dated 2/8/18.

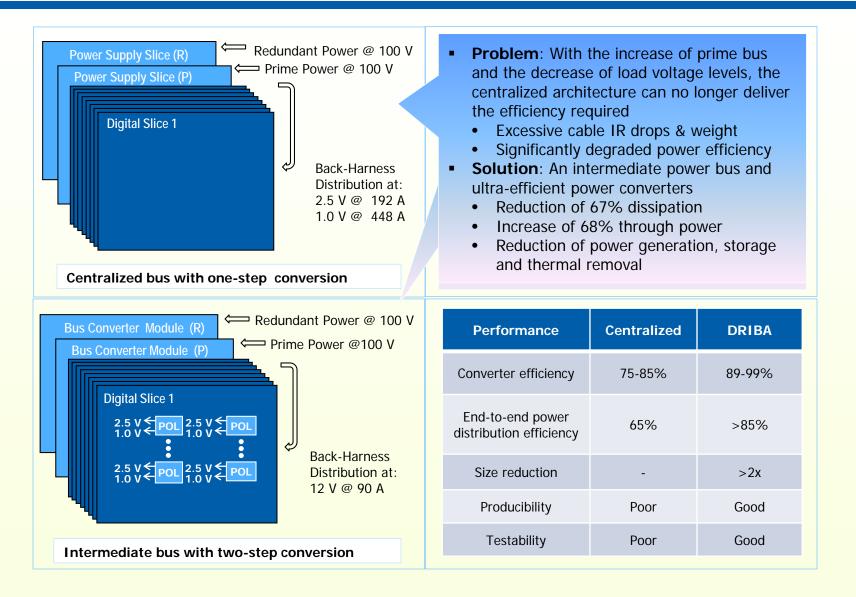
THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Outline

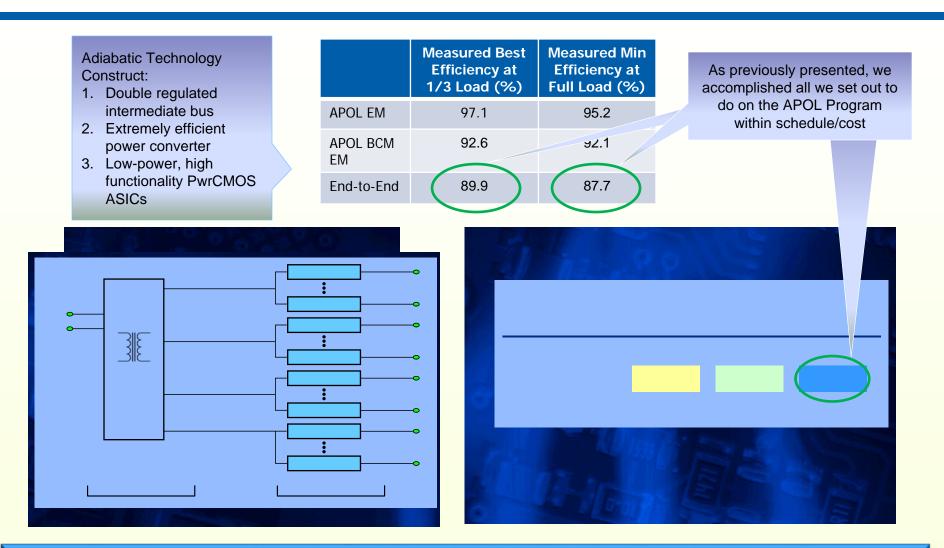
1. Double Regulated Intermediate Bus Architecture

2. Bus Converter Modules



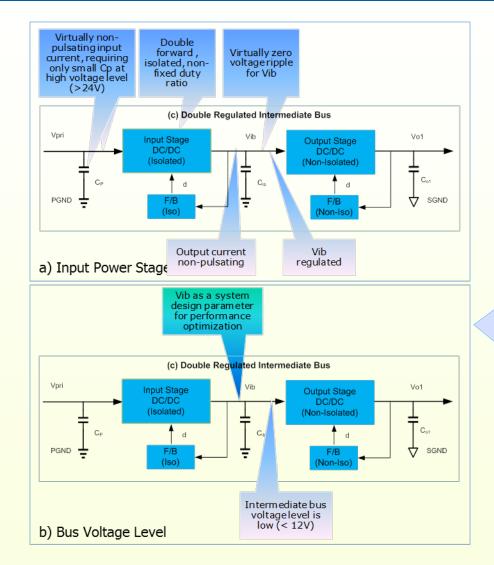
3. Point-of-Load Converters

Approved for public release; NG 17-2595 dated 2/8/18.


APOL Technology

Adiabatic Power Conversion Accomplishment

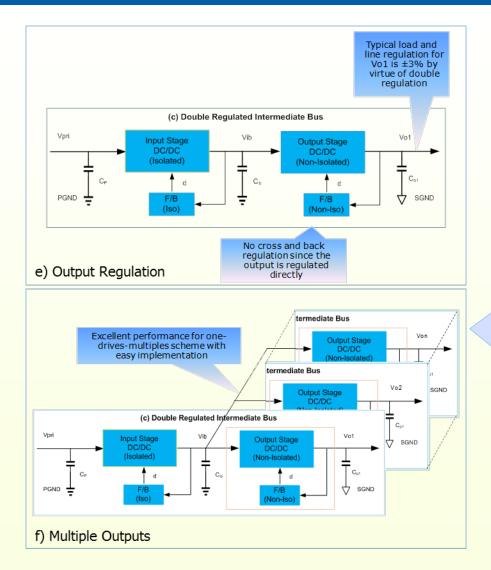
Double Regulated Intermediate Bus Architecture (DRIBA) Provides a Discriminating Technology Construct for Adiabatic Power Conversion, particularly for High Power/Low Voltage THE VALUE OF PERFORMANCE.


NORTHROP GRUMMAN

1. Double Regulated Intermediate Bus Architecture

DRIBA Key Advantages

A significant departure from prior approaches is the ability to use the intermediate bus voltage to optimize at the system level


DRIBA Key Advantages (cont'd)

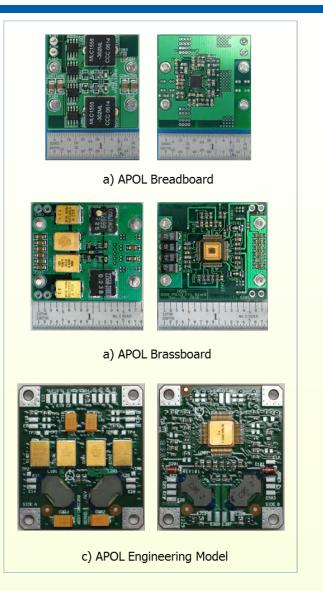
Virtually non-pulsating current at the intermediate bus and at the output

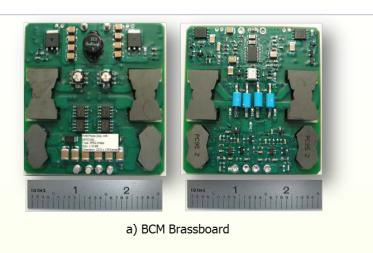
DRIBA Key Advantages (cont'd)

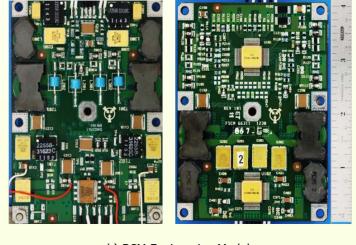
Easy paralleling for multiple outputs with tight regulation

NORTHROP GRUMMAN

Comparison of Various Architectures




	Input Power Stage	Intermediat e Bus Voltage Level	Output Power Stage	Thermal Property	Regulation	Multiple Outputs	System Stability & Output Impedanc e
Regulated	 Single ended, Buck or Buck-Boost, Pulsating input current with large cap at bus voltage level (usually >24 V) Output current can be pulsating Regulated 	High, usually > 12V	 Double ended, push-pull, half or full bridge Virtually non- pulsating input current Virtually non- pulsating output current Unregulated 	 Most efficient power stage not at output Increase of point-of-load heat flux Reduced reliability 	 Typical load/line regulation <±10% Cross regulation is large Back regulation is large 	• Poor, >±10%, typical	 Favorable in stability Output impedanc e high
Unregulated	 Double ended, half or full bridge as bus converter Virtually non- pulsating input current Non-pulsating output current Unregulated with fixed duty ratio 	Low, usually < 12V	 Single ended point of load (POL) Pulsating input current Non-pulsating output current Regulated 	 Most efficient power stage at the output Reduced point- of-load heat flux Increased reliability 	 Typical load/line regulation <±7% No cross regulation No back regulation 	• Good, ±5 -7 %, typical	 Not favorable in stability Output impedanc e low
Double Regulated	 Hybrid Virtually non-pulsating input current Non-pulsating output current Virtually zero voltage ripple Output regulated 	 Low, usually < 12V Value as a design parameter for max system performance 	 Hybrid Virtually non-pulsating input current Non-pulsating output current Output current Output regulated 	 Most efficient power stage at the output Reduced point- of-load heat flux Increased reliability 	 Typical load/line regulation <±3% No cross regulation No back regulation 	• Excellen t, <±5%, typical	 Favorable in stability Output impedanc e low


* - D. Tan, "A review of intermediate bus architecture: a system perspective," IEEE Journal of Emerging and Selected Topics inn Power Electronics, Vol. 2, No. 3, Sep., 2014, PP. 363-373

APOL Generic EM Hardware

b) BCM Engineering Model

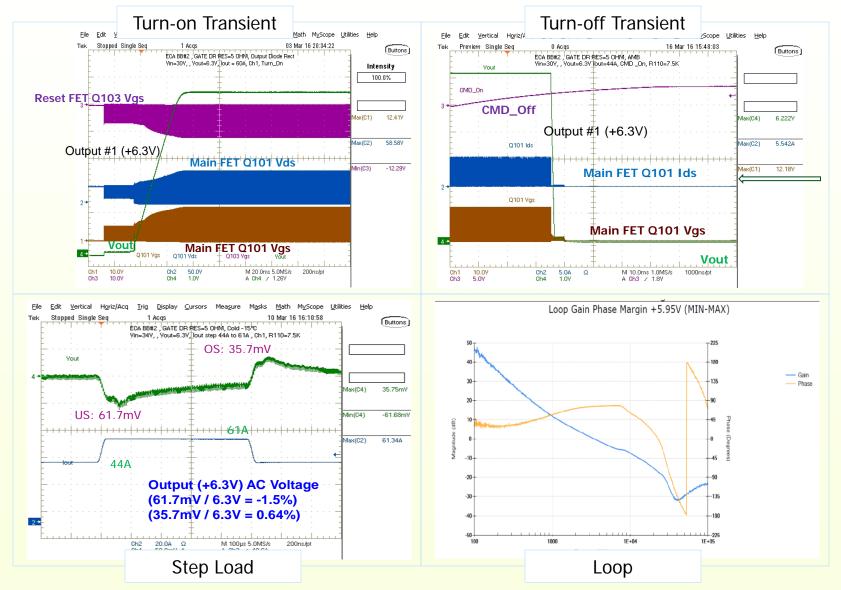
THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

2. Flight Insertion: BUS (Isolated) Converter Modules

Isolated Converters: ECA

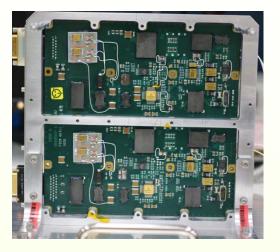
Key Features:


- Single-board assembly for superior manufacturability and testability
- Fully embedded planar magnetics
- Dedicated
 PwrCMOS ASICs
- High EMI performance
- High efficiency
- Fully redundant design

Parameters	Performance
Vin (V)	27 - 34
Vo	6.3V at 4x16=84A
Size (in3)	7.8x8.0x11.0
Efficiency (%)	86

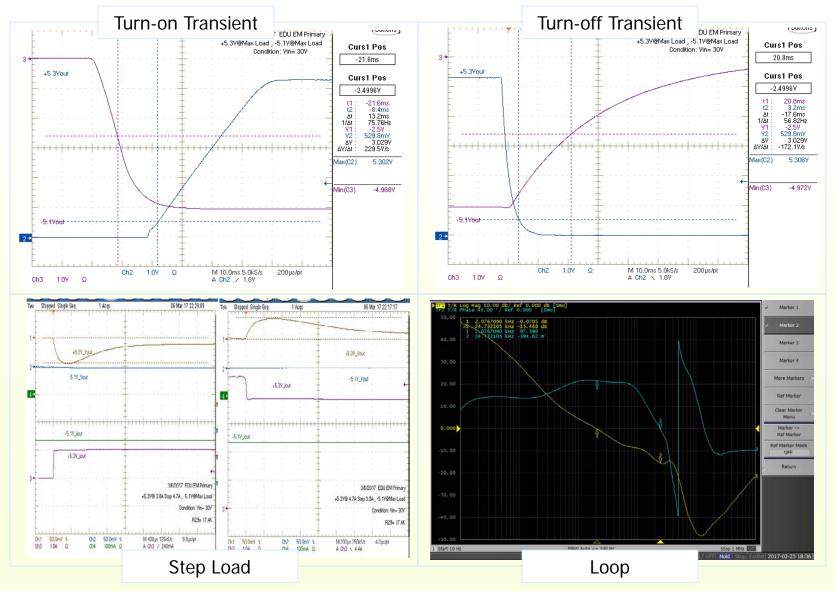
Isolated Converters: ECA Performance

Isolated Converters: EDU



Key Features:

- Single-board assembly for superior manufacturability and testability
- Fully embedded planar magnetics
- Dedicated PwrCMOS ASICs
- High EMI performance
- High efficiency
- Fully redundant design


EDU FM

Parameters	Performance
Vin (V)	27 - 34
Vo	5.3V at 4.6A
	-5.1V at 0.19A
Size (in3)	
Efficiency (%)	83

Isolated Converters: EDU Performance

THE VALUE OF PERFORMANCE.

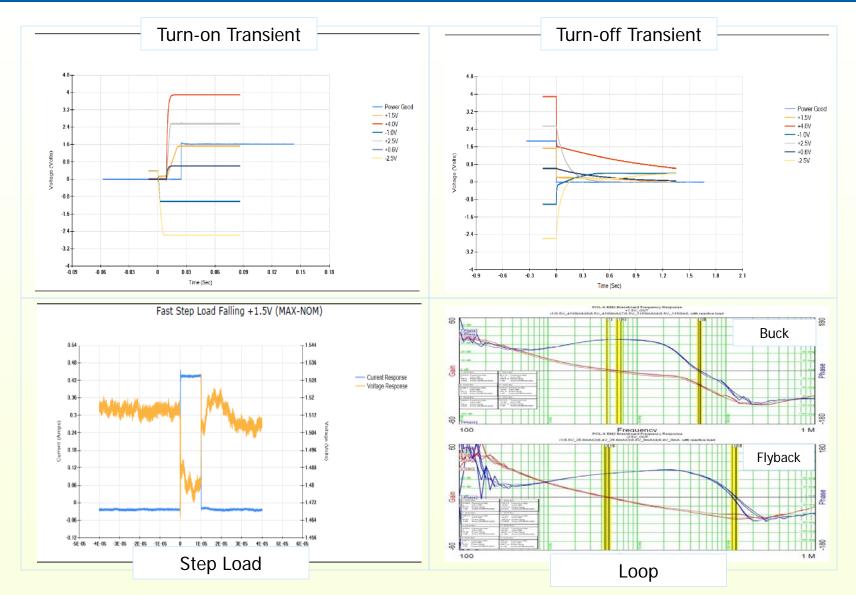
NORTHROP GRUMMAN

3. Flight Insertion: Point-of-Load Converters

Point-of-Load Converters: POL-A

Parameters	Performance
Input	4.9 – 5.2 V
Output(s)	3.3V at 1.15A
	1.82V at 0.82A
	-5.0V at 0.022A
Size (in3)	7.2x1.9x8.0
Efficiency (%)	83

POL-A Flight

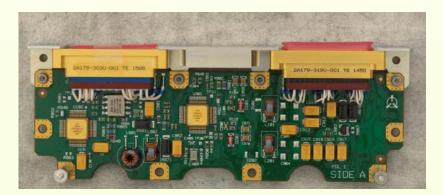

Key Features:

- Single-board assembly for superior manufacturability and testability
- Fully embedded planar magnetics
- Dedicated PwrCMOS ASICs
- High EMI performance
- High efficiency
- Fully redundant design

POL-A EM

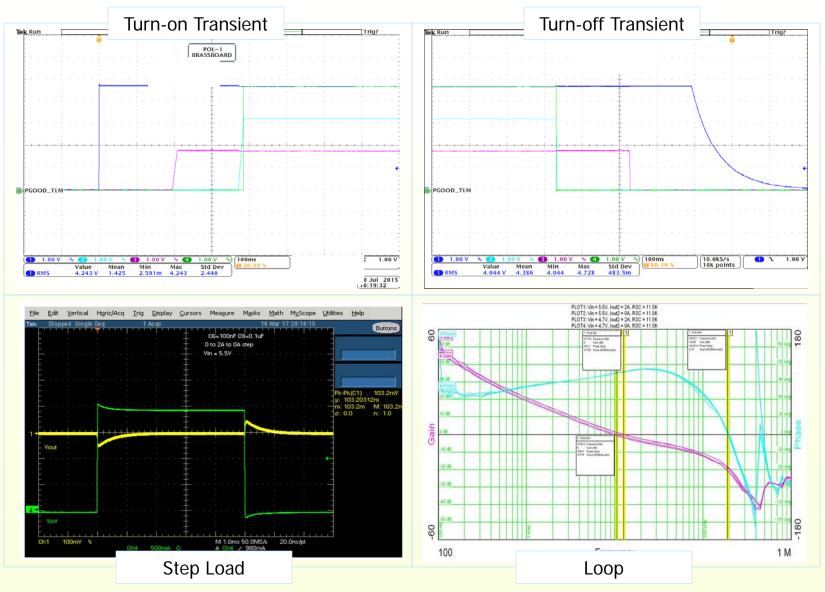
Point-of-Load Converters: POL-A Performance

Approved for public release; NG 17-2595 dated 2/8/18.


Point-of-Load Converters: POL-1

Key Features:

- Single-board assembly for superior manufacturability and testability
- Fully embedded planar magnetics
- Dedicated PwrCMOS ASICs
- High EMI performance
- High efficiency
- Fully redundant design



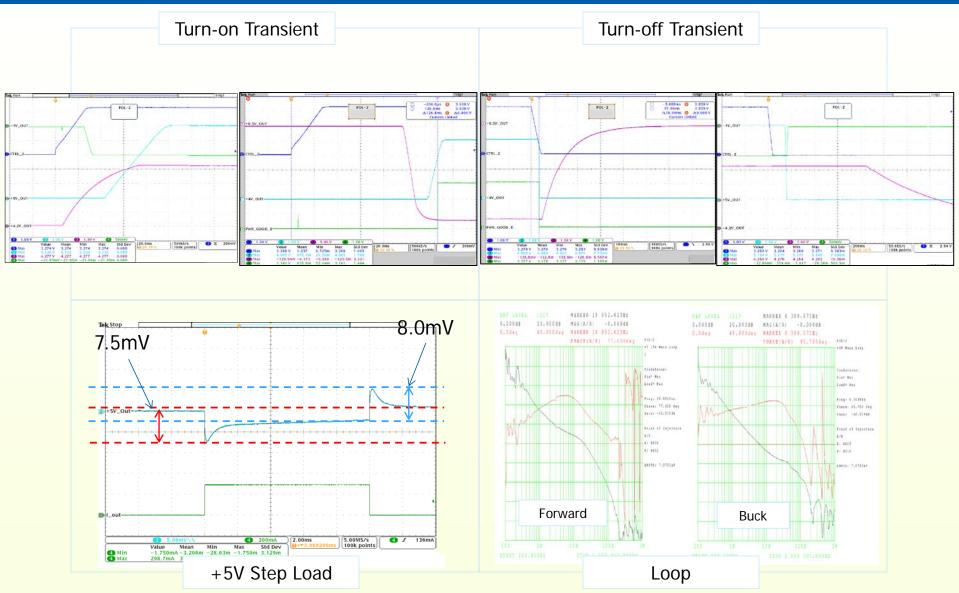
POL-1 Flight

Parameters	Performance
Input	4.9 – 5.2 V
Output(s)	3.3V at 1.15A
	1.82V at 0.82A
	-5.0V at 0.022A
Size (in3)	2.47 x 0.5 x 6.68
Efficiency (%)	83

Point-of-Load Converters: POL-1 Performance

Approved for public release; NG 17-2595 dated 2/8/18.

Point-of-Load Converters: POL-2



Parameters Input Output(s)	Performance 5.5 – 6.2 V 4.2V at 0.016A	 Single-board assembly for superior manufacturability and testability Fully embedded planar magnetics Dedicated PwrCMOS ASICs High EMI performance High efficiency Fully redundant design
Size (in3)	-1.0V at 0.246A 5.15V at 0.786A 6.5V at 0.025A 4.0V at 4.16A 20.45 x 4.265 x 1.8	
Efficiency (%)	86	POL-2 EM

Approved for public release; NG 17-2595 dated 2/8/18.

Point-of-Load Converters: POL-2 Performance

THE VALUE OF PERFORMANCE.

