# What's App at CEA for Batteries Taking the Corner of Space Industrial (and More Electric Aircraft) Revolution

Laurence Perino-Gallice, Olivier Masson, Michel Bel & Florence Fusalba

CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 France



CEA = French Alternative Energies and Atomic Energy Commission

## **CEA GLOBAL ORGANIZATION**





CEA global figures Human ressources 16,000 10 Research centers Budget: 4,3 billion € Scientific publications: 4,735 5,200 Patent families in portfolio (2012) 754 Priority patents delivered 100 Innovative high-tech start-ups since 2000 54 Joint research units

Mission DAM : France's national security independence Mission DEN : France's energy independence Mission DRT : French business' economic competitiveness



## FROM RESEARCH TO INDUSTRY : MIND THE GAP !



## THE NEW SPACE



- Context :
- Satellites, Launchers, Exploration use batteries (accumulators & piles)



- Economic Stakes:
- Launched costs 19000\$/kg (Ariane5 GTO)
  - Extended missions, more energy needs

- Industrial Space Revolution :
  - Worldwide affordable (lower costs) high-speed Internet
- Satellites Constellations



## COTS 18650 LI-IONS FOR SPACE MISSIONS ?

#### July 2014 : ESA looking for ExoMars Rover battery



#### July 2016 : Project Start Feb. 2017 : CEA Iso 8 Battery Assy Line Inauguration

Dec. 2017 : QM June 2018 : MRR Dec. 2018 : PFM ready Q1 2019 : Launch





CEA proposed a battery system built from terrestrial COTS 18650 cells qualified to operate under space environment wo cell manufacturer design modification and with no cells sorting/sparing





## BATTERY ASSEMBLY FOR NEW SPACE

#### Goal:

The objective is to develop a battery for constellation satellites (LEO)

-Customer is Design authority

SPACE

- -CEA is Design to industrialization authority
- -Process developments and qualification
- -Follows preventive approach using Lean  $6\sigma$  manufacturing method

-Quality ISO10005-EN9100 management, problem solving, risk management -Line installation, process flow definition, industrial plan, assembly operation -PFM manufacturing

-Industrial transfer

#### Design very specific :

- Baseline is the fruit of design-to-industrialization and design-to-cost engineering
  - Use of automatized processes
  - Use of low-cost approaches for mechanical HW
  - Use of COTS cells

3/1000 defect level in Operation Guideline management



#### KOM July 2016



## **DESIGN TO COST ANALYSIS**

# Design to cost engineering using automatized processes and working to qualify COTS within a LEAN $6\sigma$ manufacturing method

| SCOPE : IMPROVE BATTERY COST AS PER S/C NEEDS                                                          |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               |               |       |       |                               |
|--------------------------------------------------------------------------------------------------------|----------|----------------------------|---------------------|----------------------|------------|-------------|-------------|----------------|--------------------------------|---------------------|---------------|---------------|-------------|----------------|---------------|---------------|-------|-------|-------------------------------|
|                                                                                                        |          |                            | PRO<br>ENE<br>TO PA | VIDE<br>RGY<br>YLOAD | PRO<br>POV | VIDE<br>VER | SUS<br>CYCL | FAIN<br>E LIFE | SUS <sup>-</sup><br>LI<br>DURA | TAIN<br>FE<br>ATION | SUS<br>ENVIRO | TAIN<br>NMENT | INTE<br>WIT | RFACE<br>H S/C | ENS<br>RELIAI | JRE<br>BILITY | SAFET | Y USE |                               |
| COST ELEMENTS                                                                                          | Cost ==> | Value ==>                  | > 500               |                      | 50         | 500         |             | 500            |                                | 500                 |               | 200           |             | 200            |               | 200           |       | 0     | Total function value per cost |
| Cell (procurement parts cost, incoming activity                                                        | 200      |                            |                     | 400                  |            | 400         |             | 250            |                                | 250                 |               | 80            |             |                |               | 20            |       | 10    | 1410                          |
| if any, cell test, sorting,)                                                                           | 200      |                            | 40                  |                      | 40         |             | 40          |                | 40                             |                     | 10            |               |             |                | 10            |               | 20    |       |                               |
| Mechanical parts including assembly parts (glue, tapes)                                                | 100      |                            |                     | 25                   |            |             |             | 50             |                                | 150                 |               | 80            |             | 100            |               | 20            |       | 10    | 435                           |
|                                                                                                        |          |                            |                     | 25                   |            |             |             |                | _ <b>_</b>                     |                     | 50            |               | 20          | 50             | 10            | 20            | 20    | 40    | 105                           |
| Electrical parts (straps, EEE parts, connectors, wires, heaters)                                       | 150      |                            |                     | 25                   | 50         | 80          |             |                |                                |                     | 30            |               | 30          | 50             | 20            | 20            | 20    | 10    | 185                           |
| Electronics card (PCB assembled), monitoring interface                                                 | 250      |                            |                     | 50                   |            | 2           |             | 200            |                                | 100                 |               | 40            |             | 50             |               | 40            |       | 10    | 510                           |
|                                                                                                        |          |                            |                     |                      |            |             | 100         |                | 40                             |                     |               |               | 40          |                | 40            |               | 30    |       |                               |
|                                                                                                        |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               | 50            |       |       | 50                            |
| Battery manufacturing (operators actions,<br>intermediate inspection check, manufacturing paper work ) | 200      |                            | 20                  |                      |            |             |             |                |                                |                     | 50            |               |             |                | 80            |               | 50    |       |                               |
|                                                                                                        |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               | 50            |       |       | 50                            |
| Battery test (intermediate test, final test )                                                          | 100      |                            | 20                  |                      | 20         |             |             |                |                                |                     | 20            |               | 20          |                |               |               | 20    |       |                               |
| Others average lasked a Manufacturia line are stighting                                                |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               |               |       | 10    | 10                            |
| Packing and transportation cost                                                                        | 20       |                            |                     |                      |            |             |             |                |                                |                     | 10            |               |             |                |               |               | 10    |       |                               |
|                                                                                                        |          | Total cost<br>per function | 80                  |                      | 110        |             | 140         |                | 80                             |                     | 170           |               | 110         |                | 160           |               | 170   |       |                               |
| EXCLUDED in perimeter:                                                                                 |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               |               |       |       |                               |
| Paper work as the DRL                                                                                  |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               |               |       |       |                               |
| general quality and management                                                                         |          |                            |                     |                      |            |             |             |                |                                |                     |               |               |             |                |               |               |       |       |                               |

- Weight Battery Components Performance impact versus Cost
- i.e. COTS like 18650 commercial Li-ion cells Total Function Value per Cost is high



## BENCHMARK GIGA MANUFACTURED COTS CELLS

- <u>An extensive series of tests</u>: characterization and cycling tests (representative of mission) of several cell models
- The baseline solution is to use <u>18650 Li-ion cells</u> (highest energy densities on the shelf with low dispersion)
- Allows switching the 18650 cell by a new qualified one with higher performance wo battery design major impact (within the design tolerance) : risk mitigation if procurement shortage and warranty of bests performances wo major additional costs. Delta Qualification Strategy
- Fully qualify the cell and establish LAT strategy





## LONG LEAD ITEMS LIST - CLEAN ROOM FOR BATTERY ASSEMBLY

### February 2017 Delivery 8 months from scratch

9



- ✓ ISO8 level clean room for Space Batteries Assembly
- EN9100 level quality standard for manufacturing
- ✓ Space qualified processes
- ✓ Industrial process control by
  - CEA MES = Manufacturing Execution System
  - Bar Codes scans
  - **Cost-effective**
- For fast prototyping and industrial developments



## **QUALITY MANAGEMENT**

• 3/1000 defect level in Operation Guideline management

## **Preventive Approach**

 Design & Process FMEA\*

Engineer expertise

## Complete Process and Product Qualification

Check
Robustness

## **In-line Controls**

- Primary parts
- Equipment
- Processes
- Products
- Operators



\*Failure Mode & Effects Analysis

SPW 2019

## **A PREVENTIVE APPROACH**



## **PROCESS FAILURE MODE & EFFECTS ANALYSIS**

## Risk Priority Number (RPN)

 Actions are already taken into account during Equipment Installation and Process Qualifications to reduce them



Example of PFMEA status review with RPN classification repartition and severity

- PFMEA completed for MRR
- All risks mitigated at that time



## **ON TIME DELIVERY (OTD) STRATEGY**

- Equipment Capacity, more equipment capacity than needed
- Make batteries prior to demand, at maximum of operator capacity



- Ensures maximum OTD level during all the production period
- Key demand from the satellite manufacturer in order to respect launch schedule

## **DELIVERY STRATEGY**

- Sample batteries to be delivered within various manufacturing batches
- To preliminary detect any failure of batches (Battery SOC check before transport)
- Variation of the FIFO (First In First Out) method : **Example**



# **PROJECT** RISKS MANAGEMENT PROCESS



| CAUSE: 7M<br>section | Risk description                                                                                                     | Imp  | act | Probab<br>appea | ility of<br>rance | Total<br>risk | Action                                                                                                                                                                                | Person in<br>charge* | Statu              |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------|------|-----|-----------------|-------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--|
|                      |                                                                                                                      | High | Low | High            | Low               | 1 to 4        |                                                                                                                                                                                       |                      |                    |  |
| Management           | Industrial Project Organization                                                                                      | Y    |     |                 | Y                 | 3             | CEA ISO 9001 management +<br>Priority 1 CEA labeled project +<br>Department SteerCo weekly + Liten<br>Unit SteerCo monthly                                                            | HoP                  | $\bigcirc$         |  |
| METHOD               | Quality Plan building and operating                                                                                  | Y    |     |                 | Y                 | 3             | ISO 9100 assessment, PQP (PA)<br>writing and operation. Full Time<br>Project Quality Manager<br>Customer audit closure Q1 17<br>CEA space qualified with deviation<br>for procurement | QM                   | $\bigcirc$         |  |
| MATERIAL             | Class 100 000 room                                                                                                   | Y    |     | Y               |                   | 4             | Ready for end of 2016<br>Delivered January 2 2017<br>Inauguration February 28 2017<br>MES 2017                                                                                        | IM                   | $\bigcirc$         |  |
| MACHINES             | XXX                                                                                                                  | Y    |     | Y               |                   | 3             | Operating in November 2016<br>Full acceptance in February-March<br>2018                                                                                                               | РМ                   | $\bigcirc$         |  |
| MANPOWER             | Project resources                                                                                                    | Y    |     |                 | Y                 | 2             | CEA internal meetings with HR                                                                                                                                                         | HoP / HR             | $\bigtriangledown$ |  |
| MATERIAL             | New Components Providers using terrestrial<br>mass prod. to Space Qualify for lower battery<br>costs : Critical path | Y    |     |                 | Y                 | 4             | Strong Procurement Support                                                                                                                                                            | ТМ                   | $\bigtriangledown$ |  |



•••

\*HoP = Head of Project; QM = Quality Manager; IM = Industrialization Manager; PM = Process Manager; TM = Technical Manager, HR = Human Resources

# Process Qualification, Control Plan, SPC, 8D problem solving ... Industrial Plan Summary !

- 3/1000 defect level Guideline management :
  - Detailed PFMEA lead to preventive action plan in order to reduce number of non-conformance products
  - Qualification of processes and products
    - Qualification plan, fed by DFMEA & PFMEA and engineer's expertise, warranty the robustness of the product and process
    - Product Qualification qualify the Manufacturing Equipment / Process line
  - Primary parts management
    - **Design and supply of parts under Customer responsibility** with their standard quality process ensuring a very low level of defects
  - Equipment, Process and Products control
    - Problem solving based on <u>8D method</u>
    - **Control plan** is an output of the PFMEA to detect defects during manufacturing
    - Maintenance plan is an output of the PFMEA. The controls ensure no equipment failure
    - Equipment operating mode with control before new batch manufacturing to avoid process deviation
    - <u>Statistical Process Control (SPC)</u> approach on Critical Parameters, in order to anticipate any shift in the process
    - A final inspection point, done by quality engineer ensures good conformity of the products
  - Operator control
    - Training of operators reinforced during the Ramp-up phase
    - Regular line audits are included in quality plan, and ensure the conformance of operations





#### SPW 2019

## BATTERY PRICE BREAKDOWN FOR COMPETITIVE PRODUCT INDUSTRIALIZATION IS DEMONSTRATED

Space **Applications Achievements** Challenges **Cooperation Benefits** • Co-development with our • Batteries supply contract customer of the 1st generation won by our customer Low-cost battery Satellite Several hundreds of battery and assembly line in Risk reduction CEA LITEN Grenoble (France) Constellations satellites Battery cell usage • Use of COTS cells Launch of PFM expertise Industrial Transfer • Ability to deliver on time



## AIRBUS/CEA COOPERATION AEROSPACE BATTERIES TRACK RECORD



# CAFÉ DES FÉDÉRATIONS

