

Performance of High Energy/high Power Li-ion cells in Radiation Environments

Kumar Bugga, Charlie Krause, Keith Billings, John-Paul Ruiz, Simon jones, Erik Brandon and Richard Ewell Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91108

> **Eric Darcy** Johnson Space Center, Houston, Texas and

Chris Iannello NASA Kennedy Space Center, Florida

Space Power Workshop April 1-4, 2019

Marriott Redondo Beach Hotel, Torrance, CA

- NASA (JSC –Darcy et al) is developing thermal propagation-resistant high power/voltage batteries, demonstrating in 2 kWh battery module operating at 3C, with a specific energy >160 Wh/kg and > 200 Wh/l.
 - JPL is performing a comprehensive performance assessment of various high energy/high power 18650 Li-ion chemistries
- JPL is planning for an Europa surface mission (Lander), the Icy moon of Jupiter, with the goal of detecting biosignatures in the icy crust
 - Lander would be powered by a high energy primary battery (Li- CF_X),
 - Carrier (Cruise Stage): Li-ion battery
 - Descent Stage element would have high energy Li-ion batteries (in conjunction with solar array for the Cruise stage and exclusively for the Descent Stage)
- Applications: Planetary helicopters, Planetary Ascent vehicles Unmanned aerial vehicles, Hybrid power systems

Entry, Descent, and Landing

Mission Concept Requirement

- •Energy: ~2375 Wh
- •Power: 3375 W (peak)
- •185 minutes

Jet Propulsion Laboratory California Institute of Technology

- •Battery temperature 0-70°C
- •Approximately 20-25 kg

Original Battery Design Concept

•Primary Batteries and thermal batteries

- •Primary Battery through 180 min
 - Li/CF_x–MnO₂ 12s12p (144 D cells)
 - Power: 790 W; Energy: 2237 Wh
- •Thermal Batteries for high power (3)
 - MSL Pyro batteries
 - Power: 3375 W; Energy: 138 Wh
 - Duration: 5 min
- Current Baseline
 - High Energy/Power Li-ion battery

Notional Lander Design

Notional Descent Stage Design

Pre-Decisional Information — For Planning and Discussion Purposes Only

Hybrid (high-rate) Li-CFX vs Li-ion as a function of Coast Duration 35 Hybrid-CFX + thermal 30 -------\$ingle Li-Ion (including Estimated Battery mass, kg Pyros) 25 20 Design 15 10 4.2 5 1.5 0.5 2.5 3 3.5 4.5 1 2 4 Coast Duration, h

- Baseline system (CFx + thermal) doesn't decrease with the coast duration (battery size driven by the power of hybrid CFX battery, not energy).
- Li-ion battery size decreases almost linearly with the coast duration, since the size is driven by the energy (considerable power margin)
- Easier flexibility and modularity and testability

Pre-Decisional Information — For Planning and Discussion Purposes Only

COTS 18650 Cells (259- 276 Wh/kg and 704-735 Wh/l)

Batch 1 cells	Batch 2 cells
LG M36	LG M36
LG MJ1	LG MJ1
Panasonic BJ	Panasonic/Sanyo GA,
Samsung 35E	Samsung 3
Sony VC7 (Bottom Vent)	Samsung 36G

Performance Characteristics

Characteristic	LG MJ1	Samsung 35E	Panasonic GA	Sony VC7
Capacity at C/10 at RT, Ah	3.41	3.49	3.34	3.5
Energy, Wh	12.46	12.7	12.16	12.72
DC Internal Resistance, mOhm	33	35	33	31
Mass, g	46.9	46	47	47.4
Specific Energy, Wh/kg	266	276	259	269
Energy Density, Wh/I	720	733	704	735

Types of Tests

- Initial Characterization
- Rate characterization
 - > At different rates and temperatures
 - High rate testing
- EIS (Electrochemical Impedance)
- Cycle life testing
- Radiation exposure to 18 MRad
- High rate testing

Voltage range: 4.2 to 2.5 V

Jet Propulsion Laboratory California Institute of Technology

Identification and characterization of various elements

Cell Type	Anode		Cathode		Separator
	L (mm)	W (mm)	L (mm)	W (mm)	Thickness (mm)
Panasonic BJ	603.3	60.32	584.2	54.77	0.018
LG M36	653.2	60.32	606.4	59.63	0.02
LG MJ1	660.4	60.32	609.6	58.74	0.015
Samsung 35E	603.3	60.32	615.9	57.94	0.015
Sony VC7	603.3	59.53	615.9	59.53	0.018

• CID (shown in 35E):

• **Bottom vent (VC7, 36G):**

• Mandrel (shown in 35E):

Evidence of some corrosion in Sony VC7 cells

Cells Chemistries

- Cells dissected in the discharged state and the components were subjected to ex-situ analyses
 - XRD for cathodes and anodes
 - NMR and MS for electrolyte
 - SEM and EDAX

Jet Propulsion Laboratory California Institute of Technology

Anodes

Diffraction typical for LiMO₂ layered structure (e.g. NMC, NCA) plus Al foil

(111)/(001) peak shows variations

- NCA: Lithium Nickel Cobalt Aluminum Oxide (LiNi_{0.8}Co_{0.15}Al_{0.05})
 - LMO: Lithium Manganese Spinel Oxide (LiMn₂O₄)
 - NMC: Lithium Nickel Manganese Cobalt Oxide (LiNi_{1-x-y}Mn_xCo_yO₂)

Cathode Analyses

	<u>Anode</u>	<u>Cathode</u>	<u>Electrolyte</u>
LGMJ1	graphite	$Ni_{0.81}Co_{0.13}Mn_{0.06}$ by EDX*	EC, DMC, LiPF _{6,} LiFSI (lots)
<u>SA35E-10</u>	graphite, ~2% Si by EDX	$Ni_{0.83}Co_{0.15}Al_{0.02}$ by EDX	EC, DMC, additive, LiPF ₆ , LiFSI
<u>PBJ-10</u>	graphite	$Ni_{0.81}Co_{0.16}Al_{0.04}$ by EDX	EC, DMC (assumed), LiPF ₆ , LiFSI
<u>LM36-10</u>	graphite (less crystalline)	$Ni_{0.86}Co_{0.12}Al_{0.02}$ and $LiMn_2O_4$ (95:5)*	EC, DMC, LiPF ₆ , LiFSI (lots)
<u>SOVC7-10</u>	graphite (least crystalline)	$Ni_{0.90}Co_{0.08}Al_{0.02}$ by EDX ^{\$}	EC, DMC (assumed), LiPF ₆ , LiFSI (least

EIS after conditioning (Batch1 cells)

- Cells have very good cell-to-cell reproducibility in EIS spectra at +20 °C
- Panasonic BJ cells appear to have greater film resistance, possibly due to suspected lowtemperature optimized electrolyte
- LG M36 shows narrowest loop in BOL spectrum •

Cycle life at +20 °C – Batch 1

100% DOD cycling at C/5, 4.10 - 3.00 V

Specific Energy, Wh/kg

Energy Efficiency

- All the cells have shown good cycle life
- LG Chem MJ1 cells exhibit the highest specific energy and efficiency

Jet Propulsion Laboratory California Institute of Technology

EIS vs. cycle life at +20 °C

• All cells have shown some growth impedance over 500 cycles

Typical Eq. Circuit

- LG M36 and Samsung 35E cells had the least growth, while Panasonic cell shows the highest growth during cycling.
- Impedance from the second loop is dominant (Charge transfer kinetics of cathode)

210

200

190

180

160

150

0

170 Cycle life at 0°C

C/5 = 0.58A rate, 4.1-3.0 V

20

Cycle no.

60

40

Specific energy / Wh kg⁻¹

Specific Energy, Wh/kg

Energy Efficiency

All the cells have shown high specific energy of 190 Wh/kg at 0C, with LG Chem MJ1 cells offering the ~205 Wh/kg.

Exposure to Cobalt-60 (60Co) Radiation

- Two exposures: 12 Mrad and 8 Mrad for a total of 20 Mrad TID (12 MRad for planetary protection and 8 MRad from the Jupiter/Europa environment
- Cells were at full SOC (4.10 V) during exposure

Jet Propulsion Laboratory California Institute of Technology

• Control cells: At the same temperatures the radiation cells experienced during irradiation

Irradiation of cells in two stages

Capacity vs Radiation dose

M36 MJ1 GA 35E 36G VC7

Specific Energy vs Radiation dose

M36 MJ1 GA 35E 36G VC7

- Solid: radiation exposed; 0 Mrad, 12 Mrad, 20 Mrad
- hashed: 0 rad control group, after stand periods equivalent to irradiation duration
- All the cells show impressive tolerance to radiation with about <2% capacity loss (compared to control cells) after 20 Mrad exposure.
- Again, LG Chem MJ1 cells have the highest specific energy High Energy and High Power Li-Ion Cells

- Only very small increase in series resistance
- Increase in breadth of impedance loop

Jet Propulsion Laboratory California Institute of Technology

Minimal change in Sony VC7 cells and maximum change in Panasonic BJ cells

Specific Energy, Wh/kg

Energy Efficiency

• Radiated cells are cycling well; slightly lower specific energy, but less fade rate.

Discharge rate test at +20 °C

 Excellent rate capability with LG M36 Cells (90% of the capacity, 190 Wh/kg at 1.5C rate

Jet Propulsion Laborator California Institute of Technology

• No change in the rate capability after radiation exposure (20 Mrad)

High Rate Testing (9.6 A)

Discharge profiles at 9.6 A - Comparison of cells

• Considerable cell warm up in a convectively controlled chamber

High Rate Testing (9.6 A)

Discharge profiles at 9.6 A - Comparison of cells

• Considerable cell warm up in a convectively controlled chamber

High Rate Testing (9.6 A)

- Conclusions
 - Recent Li-ion 18650 COTS cells provide high specific energy and high power density, good cycle life and resilience to high-intensity radiation environments.
 - LG Chem MJ1 cells show impressive performance in all the categories.
- Future Plans
 - Testing of multi-cell modules (8S5P) for cell divergence during cycling and storage
 - Capacity retention during (cruise) at different States of Charge
 - Post-radiation performance (storage and cycling)
 - Destructive Physical Analysis of irradiated cells for an understanding of radiation effects

This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with the National Aeronautics and Space Administration and supported by NESC and JPL's Europa Lander Mission Concept Study.