Leah Ellis⁼, S. Buteau⁼, Samuel G.C. Hames, L.M. Thompson, D.S. Hall, and J.R. Dahn

- **Energy density**
 - (250-693 W·h/L)

Energy (Wh) =

- Cycle life
 - (>1000 cycles, ~10 years)

E-One Moli for 2200 mAh NMC 18650 power cells. C-rate cycling at 23°C.

Solvent oxidization

3

Solvent reduction

Salt/ solvent decomposition

Campion, et al., J. Electrochem. Soc. 2005, A2327

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)

Gas Chromatography + Mass Spectrometry (GC-MS)

6

Fourier Transform Infrared Spectroscopy (FTIR)

electrolyte	method	LiPF6 / wt. %	EC / wt. %	DMC / wt. %
Fresh	GC-MS/ICP-OES	13.1 ± 0.1	26.5 ± 0.2	60.4 ± 0.3
	FTIR-ML	13.3 ± 0.4	27.5 ± 1.5	59.3 ± 1.2
4.1 V	GC-MS/ICP-OES	9.8 ± 0.2	29.51 ± 0.03	60.7 ± 0.2
	FTIR-ML	10.08 ± 0.02	25.35 ± 0.04	64.57 ± 0.03
4.3 V	GC-MS/ICP-OES	12.5 ± 0.2	29.8 ± 0.1	57.8 ± 0.1
	FTIR-ML	11.4 ± 0.4	25.4 ± 1.1	63.2 ± 0.9
4.5 V	GC-MS/ICP-OES	11.8 ± 0.1	30.22 ± 0.03	58 ± 0.3
	FTIR-ML	10.5 ± 0.6	26.3 ± 0.6	63.3 ± 0.5

9

4 months test at: 20°C 40°C 40°C

<u>method</u>	<u>Analytes</u>	<u>Sensitivity</u>	<u>preparation</u>	<u>Speed</u>	<u>Instrument cost</u>
	Organic solvents LiPF ₆	3-5 wt %	none	seconds/ sample	~\$18,000 USD
GC-MS	Organic solvents Trace components	ppm	Extraction, DCM	~ 1h / sample	~\$100,000 USD
ICP-OES	LiPF ₆	ppm	Dilution, HNO ₃	~ 1h / sample	~\$100,000 USD

- Analyzing electrolyte helps to understand cell failure
- electrolyte analysis with FTIR is
 - ✓ faster
 - ✓ cheaper
 - ✓ "greener"
- The FTIR method can be used for other solutions
 - redox-flow electrolytes

Thank you!

Dahn lab, 2018

Tesla Inc.

Walter C. Sumner Memorial Fellowship

