In Situ and Operando Characterization of Lithium-ion Electrodes Using Transmission X-ray Microscopy

Jesse S. Ko and Johanna Nelson Weker*

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA

Outline

- Background and motivation
- □ Cathode: Lithium cobalt oxide (LiCoO₂)
- □ Anode: Tin (Sn)
- Geven the second second
- Conclusions
- Acknowledgements

Background and motivation

- Li-ion batteries currently dominate the energy storage landscape (on Earth)
- Space applications require higher tolerance to extreme operating conditions:
 - Light weight & compact
 - Gravity
 - Operate under extreme temperatures (–120°C to 475°C)
 - Long calendar life
 - Tolerance to high levels of radiation
 - Safe

Winter et al., Chem. Rev., 118 (2018)

Stanford Synchrotron Radiation Lightsource (SSRL)

10-1 Soft X-ray NEXAFS/PES 10-2 XAS Imaging/X-ray Scattering 8-1 PES 9-2 Crystallography 8-2 NEXAFS/PES 9-3 Bio-XAS 7-1 Crystallography 7-2 X-ray Scattering 7-3 Bio-XAS 12-1 Crystallography (construction) 12-2 Crystallography 2-1 Powder/Thin Film Diffraction ID ID 2-2 Catalysis XAS/White Beam 16-1 VUV/Soft X-ray Metrology 2-3 MicroXAS Imaging 16-2 Hard X-ray Metrology (construction) 6-2 XES-RIXS-Raman / TXM 1-5 Small Angle Scattering LEGEND Insertion Device 5-2 High-Res ARPES Bending Magnet 5-4 Low-E High-Res ARPES /BM 15-2b XES-RIXS-Raman (construction) ВM 17-2 X-ray Scattering (engineering) 13-1 Soft X-ray STXN 13-2 XPS/XES 11-1 Crystallography 13-3 Coherent Scattering 4-1 XAS 11-2 MEIS-XAS 4-2 Bio-SAXS 11-3 Materials Diffraction 4-3 Low-medium Energy XAS 14-1 Crystallography 14-3 Low Energy XAS/XAS Imaging

0

SSRL 4

X-ray interactions with matter

Characterization across multiple length scales

- 1. Unpublished results from APS on an 18650 cell
- 2. Nelson Weker et al, ChemElectroChem, 2 (2015)
- 3. Wise et al. ACS Catal., 6 (2016)
- 4. Cao et al, Nano Lett., 16 (2016)

Transmission X-ray microscopy @ BL6-2c

X-ray microscopy provides nondestructive, high resolution X-ray images

- Fast: ½ sec imaging
- ~30 nm resolution imaging
- ~30 µm field of view (mosaic mode)
- \Box thick samples \rightarrow *in situ* samples
- elemental/chemical mapping (~5 ~13 keV)
 - Ni, Mn, Co, Fe, and Zn
- tomography (~50 nm resolution)

SLAC

Comparison to other complementary techniques

Plot of various in situ imaging techniques for energy storage and type of cells.

As imaging resolution is improved to study finer structures, the required modifications to the *in situ* cell take it further from a realistic commercial battery architecture

Nelson Weker et al., Adv. Funct. Mater., 25 (2015)

Outline

- Background and motivation
- □ Cathode: Lithium cobalt oxide (LiCoO₂)
- □ Anode: Tin (Sn)
- Geven the second second
- Conclusions
- Acknowledgements

Commercial cathode material: LiCoO₂

~135 mAh g⁻¹ reversible capacity (~0.5 Li⁺)

Operando XANES of deep discharge of LiCoO₂

Deep discharge of LiCoO₂

SLAC Nelson Weker et al., Electrochim. Acta, 247 (2017)

Incomplete transformation to Co metal:

- Core/shell: Core remains LiCoO₂
- Disconnected particles remain LiCoO₂

Outline

- Background and motivation
- □ Cathode: Lithium cobalt oxide (LiCoO₂)
- □ Anode: Tin (Sn)
- Geven the second second
- Conclusions
- Acknowledgements

Porous anodes for high capacity and high cycle life

SLAC

UCLA

Mechanism	Pros	Cons	Example (Specific Capacity)
Intercalation	Maintains Structure	Low Capacity	Graphite (372 mAh g ⁻¹)
Alloy	High Capacity	Volume Expansion	Tin (960 mAh g⁻¹)

Li⁺ in

Cracking and Pulverization

Nanoparticles

Lose contact with conductive matrix and current collector

UCLA

SLAC

Selective dealloying – facile method to form porous networks

Erlebacher et. al., Nature, 410 (2001)

UCLA

Visualizing volume changes in dense and porous Sn

Visualizing volume changes in dense and porous Sn

End of Li⁺ insertion leads to burst expansion of dense Sn

Crack formation in dense Sn

Porous Sn 6× smaller areal expansion

UCLA

Outline

- Background and motivation
- □ Cathode: Lithium cobalt oxide (LiCoO₂)
- □ Anode: Tin (Sn)
- Geven the second second
- Conclusions
- Acknowledgements

Multivalent charge storage (Mg²⁺, Zn²⁺, Ca²⁺, etc.)

Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges

Pieremanuele Canepa,^{*,†,‡,@©} Gopalakrishnan Sai Gautam,^{†,‡,§,@} Daniel C. Hannah,^{†,@} Rahul Malik,[‡] Miao Liu,^{||} Kevin G. Gallagher,[⊥] Kristin A. Persson,^{||} and Gerbrand Ceder^{*,†,‡,§}

[†]Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
[‡]Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

⁸Department of Materials Science and Engineering, University of California Berkeley, California 94720, United States ^{II}Energy and Environmental Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

¹Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States

X-ray diffraction measurements @ BL11-3

□ Confirm phase-pure NVP particles @ BL11-3

Na₃V₂(PO₄)₃ Rhombohedral $R\overline{3}c$ space group a = b = 8.7 Åc = 21.8 Å

Operando XRD (@ SSRL BL11-3) shows qualitative changes during charge/discharge

Conclusions

- Transmission X-ray microscopy enables high resolution operando visualization of battery materials nondestructively
- Tracked the chemistry of LiCoO₂ particles by mapping Co oxidation states when cycled outside standard operating conditions
- Understood the benefits of 3D porous morphology on volume expansion anode material (Sn)
- Investigating multivalent charge storage based on Zn²⁺ insertion/de-insertion of Na₃V₂(PO₄)₃

Acknowledgements

SLAC

Thank you for your attention and time

Johanna Nelson Weker

Michael Toney

Partha Paul

Natalie Seitzman

Kipil Lim

Office of Science

Sarah Tolbert

John Cook

Terri Lin

Andrew Dawson

