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Background and motivation

 Li-ion batteries currently dominate the energy storage landscape (on Earth)
 Space applications require higher tolerance to extreme operating conditions:

 Light weight & compact
 Gravity
 Operate under extreme temperatures (−120°C to 475°C)
 Long calendar life
 Tolerance to high levels of radiation
 Safe

Winter et al., Chem. Rev., 118 (2018)
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Stanford Synchrotron Radiation Lightsource (SSRL)
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X-ray interactions with matter

R. Bartolini, University of Oxford
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Characterization across multiple length scales

1. Unpublished results from APS on an 18650 cell
2. Nelson Weker et al, ChemElectroChem, 2 (2015)
3. Wise et al. ACS Catal., 6 (2016)
4. Cao et al, Nano Lett.,16 (2016)
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Transmission X-ray microscopy @ BL6-2c

 Fast: ½ sec imaging

 ~30 nm resolution imaging

 ~30 µm field of view (mosaic mode)

 thick samples  in situ samples

 elemental/chemical mapping (~5 – ~13 keV)

 Ni, Mn, Co, Fe, and Zn

 tomography (~50 nm resolution) 30μm

Mosaic mode

X-ray microscopy provides nondestructive, high resolution X-ray images



Plot of various in situ imaging techniques for energy storage and type of cells.

As imaging resolution is improved to study finer structures, the required modifications to the in situ 
cell take it further from a realistic commercial battery architecture
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Comparison to other complementary techniques

Nelson Weker et al., Adv. Funct. Mater., 25 (2015)
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Commercial cathode material: LiCoO2

~135 mAh g−1 reversible capacity (~0.5 Li+)

LiCoO2  Li1-xCoO2 + x Li+ + x e- (x ≤ 0.5)
charge

discharge
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Operando XANES of deep discharge of LiCoO2

 LiCoO2 + 3Li+ + 3e− Co + 2Li2O

 Agrees with capacity (~2.6 Li+) and 

operando X-ray diffraction

discharge

Nelson Weker et al., Electrochim. Acta, 247 (2017)



Deep discharge of LiCoO2

Incomplete transformation to Co metal:
• Core/shell: Core remains LiCoO2
• Disconnected particles remain LiCoO2

Nelson Weker et al., Electrochim. Acta, 247 (2017)
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Porous anodes for high capacity and high cycle life

Mechanism Pros Cons Example (Specific 
Capacity)

Intercalation Maintains 
Structure

Low
Capacity Graphite (372 mAh g−1)

Alloy High Capacity Volume 
Expansion

Tin (960 mAh g−1)

Cu Current 
Collector

Cu Current 
Collector

Cu Current 
Collector

Li+ in

Li+ out Lose contact 
with conductive 

matrix and 
current collector

Cu Current Collector

Cu Current Collector

Cracking and 
Pulverization

Bulk Nanoparticles

Li+ in
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 Nanoporous Sn (NP-Sn) with ~25% 

internal porosity

 High capacity alloying anodes undergo 

large volume changes during cycling 

resulting in cracking/pulverization 

 Nanoporosity can reduce volume changes 

to avoid irreversible deformation and 

extend battery lifetime

Acid/Base

Sacrificial Metal
More Noble Metal

Sn15Mg85

Erlebacher et. al., Nature, 410 (2001)

Selective dealloying – facile method to form porous networks

Nanoporous Sn
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Visualizing volume changes in dense and porous Sn

Lithiation

Delithiation

Dense Sn

NP-Sn

Dense Sn

NP-Sn
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Visualizing volume changes in dense and porous Sn

 End of Li+ insertion leads to burst expansion of dense Sn

 Crack formation in dense Sn

 Porous Sn 6× smaller areal expansion
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Multivalent charge storage (Mg2+, Zn2+, Ca2+, etc.)

*Canepa et al., Chem. Rev., 117 (2017)
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X-ray diffraction measurements @ BL11-3

Rw = 0.975%
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NVP powder X-ray diffraction pattern
Na3V2(PO4)3

Rhombohedral   R3c space group
a = b = 8.7 Å
c = 21.8 Å

 Confirm phase-pure NVP particles @ BL11-3

Na1 & Na2

VO6

PO4
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Operando XRD (@ SSRL BL11-3) shows qualitative changes during 
charge/discharge

Counter:
Zn foil (0.25 mm)/4 mm hole in center

Separator:
Whatman
glass fiber

Electrode (70/20/10):
NVP/SuperP/PVDF 
coated on Al foil
mass loading: 1 mg cm−2

Electrolyte:
0.5 M Zn Acetate
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Conclusions

 Transmission X-ray microscopy enables high resolution operando
visualization of battery materials nondestructively

 Tracked the chemistry of LiCoO2 particles by mapping Co oxidation states 
when cycled outside standard operating conditions

 Understood the benefits of 3D porous morphology on volume expansion 
anode material (Sn)

 Investigating multivalent charge storage based on Zn2+ insertion/de-insertion 
of Na3V2(PO4)3

TXM at beamline 6-2c (SSRL)
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