Photochemistry of common spacecraft outgassing contaminants: A review

> Abraham N. Buditama The Aerospace Corporation

> > **April 2019**

Approved for public release. OTR 2019-00605.

Objective

- To impress the importance of photo-induced molecular contamination
- To appreciate the complexities of VUV photochemistry
- To organize the knowledge gleaned from VUV research from the past three decades
- To highlight important parameters/components in VUV photodeposition research

The audience should walk away with a greater appreciation for VUV photochemistry

On-orbit degradation of thermal radiators

- Solar absorptance increase (Δα) is a way to characterize contaminant degradation
- SCATHA spacecraft launched to quantify contaminant deposition in GEO
- SCATHA was engineered with good contamination control

Spacecraft contamination can severely hinder on-orbit performance

SCATHA sunlit vs. shadowed TQCMs

TQCM data shows evidence of VUV-induced contaminant accumulation

Vacuum ultraviolet (VUV) solar spectrum

- Atmospheric O₂ absorbs photons < 200 nm
- Peak at 122 nm is hydrogen Ly-α line
- The bond dissociation energies shown here are for very strong bonds
- VUV can cleave through most chemical bonds

The VUV portion is small but has the highest energies

Review of chemical bonding

Interatomic distance

A chemical bond is a potential well, and electrons can be excited out of it by photons

Review of chemical bonding

Interatomic distance

A chemical bond is a potential well, and electrons can be excited out of it by photons

Review of molecular orbital theory

- Atomic orbitals combine to make bonding and antibonding molecular orbitals
 - In quantum terms, a linear combination of two atomic electronic wavefunctions output a lower-energy wavefunction with *l* angular nodes and a higherenergy one with *l* + 1 angular nodes
- The spacing between the energy levels determine what wavelengths can be absorbed
- Molecules with π bonds (things with multiple bonds, aromatic groups, etc.) tend to have smaller spacings between energy levels than those with σ bonds (things with single bonds)

Excitation to an antibonding orbital is sufficient to make a chemical bond unfavorable

Contaminant + $hv \rightarrow Contaminant^* \xrightarrow{Relaxation} Contaminant$

Photoexcitation can take many pathways and does not always lead to breaking bonds

VUV induces many competing reactions

Bisphenol A polycarbonate photochemistry

Polymerization

Terrestrial empirical data

VUV is strongly absorbed and penetrates only a thin surface layer of solid PC Far UV tends to excite these Mid UV tends to excite these

- Electrons in π systems (aromatic rings and conjugated bonds) are more delocalized, so excitations can dissipate more easily without bond cleavage
- Excitations in σ bonds (single bonds) are more likely to break them, causing smallmolecule volatilization and cross-linking

[Adams 1993]

Chemical bonds of contaminants affect what kind of reactions can occur

Substrate effects

Temperature

Without VUV

- A molecule gains enough energy to desorb from a substrate
- The colder it is, the less likely that desorption would occur
- Thus contaminants accumulate more on colder surfaces

With VUV

- Photofixing can occur in spite of warm temperatures (as on SCATHA) [Hall 1983]
- Overall desorption rate is a competition between thermal desorption, photodesorption, and photopolymerization [Olson 2008]
- Cold temperatures could inhibit photofixing [Nghiem 2009], but this does not inhibit physisorption to cold surfaces

Without VUV, desorption purely thermal; with VUV, photodesorption + photopolymerization

Substrate effects

Surface energy

The morphology of contaminants can be controlled by substrate surface energy

Contaminant coverage

Photodeposition rates depend on physical adsorption rates

Molecules deposit monolayer by monolayer

Langmuir adsorption [Stewart 1989]

BET adsorption [Glassford 1992, Pereira 2006, Olson 2008]

Contaminant sorption differs between bare substrate and on adsorbed contaminants

VUV and Contaminant Effects

Photon flux and contaminant flux

Either contaminant flux or photon flux could be rate-limiting, so minimizing them could reduce potential photodeposition:

- Minimize view factor of contaminant sources
- Keep sensitive surfaces away from direct sunlight photon fire ph

Photons also need to be of sufficiently high energy

When system is photon-rich, contaminant is limiting deposition rates, and vice versa

Contaminant Effects

Molecular composition

Certain classes of materials are more likely to photodeposit

Contaminant Effects

Compositional purity

[Villahermosa 2008, Hanrahan 2014]

The nominal composition of a material can be different from outgassed species

Summary of contaminant literature

Year	Authors	Contaminants	Substrate	UV source	Major findings
1983	Hall ²	flight contaminants	QCM	Sun	SCATHA TQCM data show evidence of VUV-induced contaminant accumulation
1985	Hall, et al.4	from SCATHA mission			
1988	Arnold, Hall ³				
1988	Stewart, et al.5	DC-704, DEHP	QCM, Au, Al, MgF ₂	Kr/Xe lamps	Laboratory results confirm VUV-induced irreversible deposition; deposition rate inversely dependent on temperature upon irradiation
1989	Stewart, et al.6				A Langmuir-like model (ideal contaminant vapor, substrate perfectly flat, adsorbed molecules do not interact) of photochemical deposition proposed, and empirical fitting was done to infer the kinetic parameters
1992	Frink, et al.7	DC-704 equivalent	QCM, MgF ₂	Xe lamp	Measured outgassing rates and optical transmission; solvent/wiping partially removed photodeposited film
1993	Adams, Garton ²⁰	BPA PC	—	Deuterium lamp	Spectroscopic determination of solid BPA PC VUV photochemical mechanisms; VUV absorbed mostly in a thin surface layer
1996	Arnold, Luey ¹⁵	DEHP, BPA, DC-704, others	QCM, fused silica	Kr/Xe lamps	Explored which classes of molecules photodeposit (phthalates, phenols, aromatic amines, silicones, alkenes) and which do not (aromatic hydrocarbons, aliphatic carbonyls)
1996	Shaw ³⁸	DC-704	QCM	Ly-α lamp, Hg lamp	Showed different rate regimes for sub-monolayer coverage; deposition rates from a Ly- α photon about 6 times higher than from a 180 nm photon
1996	Tveekrem, et al. ²⁹	Real on-orbit contaminants	MgF ₂ - and Al- coated mirrors	Earth albedo	Onboard contamination from Hubble presents as non-uniform haze with droplet morphology; gentle cleaning with detergent and acetone recovered optical lens transmission, confirming that degradation is attributed to contamination only
1998	Arnold ¹⁶	-	—	_	Proposed deposition and desorption kinetics for different monolayer coverages, Clausius–Clapeyron or Raoult behavior for pure substances and mixtures respectively, and outgassing rates for diffusion-controlled desorption
1998	Fong ⁵³	—	_	_	Proposed time-dependent sticking coefficient theory for photoexcited vs. ground state contaminants ; sticking coefficient should decrease with time; photoexcitation rate must exceed thermal desorption rate for photodeposition to occur
2003	Pereira, et al. ⁸	DEHP	QCM	D lamp	Expanded Stewart et al.'s model of photodeposition kinetics; included temperature, surface coverage, and desorption effects; compared with experimental results
2006	Albyn, Burns ¹⁷	Epoxies, rubbers, adhesives, oils	QCM	D lamp	Observed contaminant photodesorption by VUV irradiation
2008	Olson, et al. ¹⁸	DEHP	QCM	D lamp	Photodesorption is reduced by low substrate temperatures; low VUV intensity led to VUV-induced desorption; high VUV intensity led to photopolymerization
2008	Luey, Coleman ³⁰	DEHP, DC-704	Si wafer	D lamp	VUV can convert contaminant droplets into contaminant films; photopolymerization rates slower for multi-component systems
2008	lanno, Thompson ³⁹	RTV CV-2568	MgF ₂ -coated coverglass	Xe lamp, solar simulator	Postulated that the photodeposition process can be influenced by the relative abundance of contaminant molecules and photons (photon flux–limited regime vs. a contaminant flux–limited regime) via QCM and in situ ellipsometry
2009	Tondu, et al.45	BPA	QCM	D lamp	Pure contaminants can still give multiple TGA peaks because heating can induce contaminant phase changes; irradiation can lead to cluster morphology
2009	Nghiem, et al. ^{32,33}	Tridecan-2-one	QCM	D lamp	Observed that UV fluence has non-monotonic effect on less volatile products; low temperatures can inhibit photolysis and limit non-volatile residue
2010	Coleman, Luey ³⁴	Epoxies, silicones, phthalates	Si wafer, QCM	D lamp	VUV pre-irradiation of surfaces promotes films instead of droplets; increasing substrate surface energy suggested to be underlying reason
2012	Coleman, Luey ³⁵	DC-704, DEHP	Si wafer, QCM	D lamp	Various surface cleaning methods (piranha wash, deuterium lamp irradiation) suggest that stripping native SiO _x and adventitious carbon promotes film morphology as opposed to droplets; VUV photochemistry effective at removing this outer layer of adventitious carbon
2014	Hanrahan, lanno41	Silicones	Si wafer	Xe lamp	FTIR data shows that nominal composition of bulk materials differs from actual composition of outgassed species
2016	Roussel, et al. ¹⁴	BPA	QCM	D lamp	Numerical modeling of kinetics accounts for competition between fixation and desorption; photodeposition can occur even without concurrent VUV irradiation
2018	Luey, et al. ³⁷	Epoxies, silicones	Si wafer, Au, ZrO ₂ , HMDS	D lamp	Material coatings made to alter substrate surface energies are effective in changing contaminant morphology

Full table in manuscript

Conclusions

- Three primary components of VUV photodeposition
 - Substrate
 - Temperature
 - Surface energy
 - Contaminant overage
 - VUV
 - Photon energy
 - Photon flux
 - Contaminant
 - Contaminant flux
 - Molecular composition
 - Compositional purity

 Overall deposition is a result of a competition between various photochemistry mechanisms, which can be pushed one way or the other by these different parameters