Advanced Space-Based Testbed (XST): "On the Shoulders of Giants"

Dr. Robert Ewart SMC Chief Scientist Roberta.Ewart@us.af.mil Elozor Plotke, MSEE, PE XST Chief Engineer SMC/ZAT METIS Program Elozor.Plotke.ctr@us.af.mil

03 April 19

The views expressed in this presentation are solely those of the author(s). DISTRIBUTION A: Approved for public release; distribution unlimited" is also required on the first page of this document

XST Concept Overview

- Motivation (EPIC SPEED to increase Developmental Test (DT))
- Background (Numerous demands for speed & improvement)
- Concept (Improve DT)
- Concurrent Concept Development Mechanics
- Way ahead
 - Leverage existing technology, on-going S&T in-Space Assembly (iSA) Space Forum discussions Nov 6-7 '18
 - Provide link to immediately on ramp concepts & provide new strategic thinking pathfinders

Motivation: SMC 2.0 EPIC SPEED

SPACE AND MISSILE SYSTEMS CENTER

- 200
- Enterprise

- A wide network of suppliers including both traditional & innovative start-ups
- Collaboration with Inter-agency & international allies to share costs, movefaster,
- & improve capability

Shared vision & strategy

Partnerships

• A culture that encourages fast-failure & fast-learning

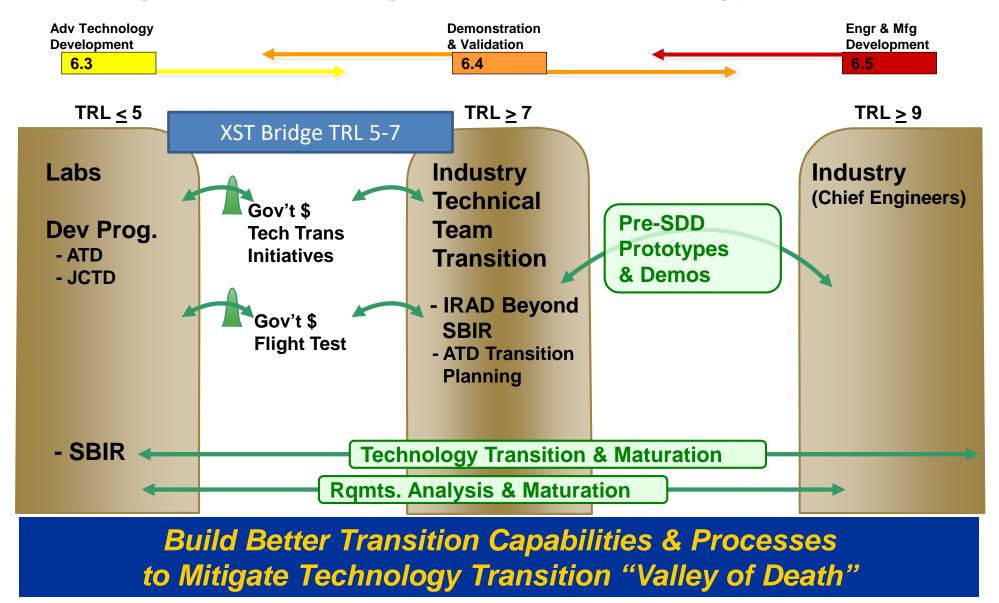
Ability to dynamically reallocate resources

Resilient, multi-layered architectures & infrastructure services

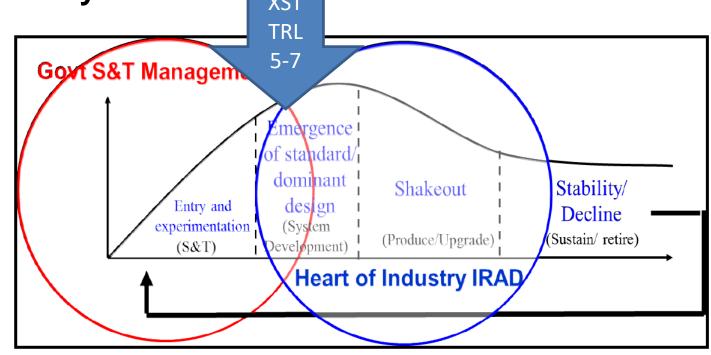
- Balanced portfolio providing incremental improvement & opportunities for innovation
- Strategic innovative investments in high pay-off tech & game-changing capabilities

Culture

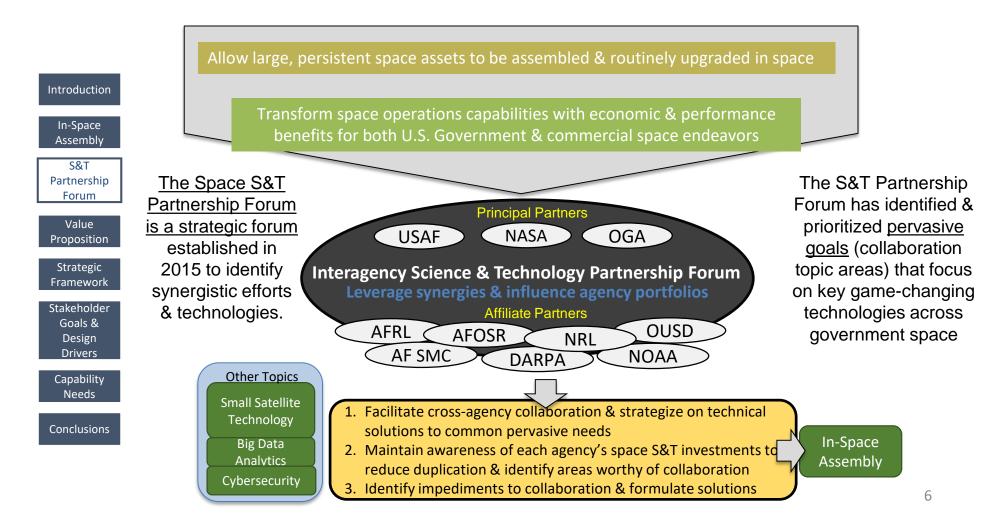
- Mission-focused, motivated, knowledgeable, & empowered workforce
- A culture of risk-taking & continuous improvement
- Talent management system designed to develop leaders, empower teams, and reward performance



- Increase decision-making velocity with flatter organization & delegated authorities
- Streamlined processes, documentation & reviews tailored for theacquisition strategy


Background: Integrated Technology Transition

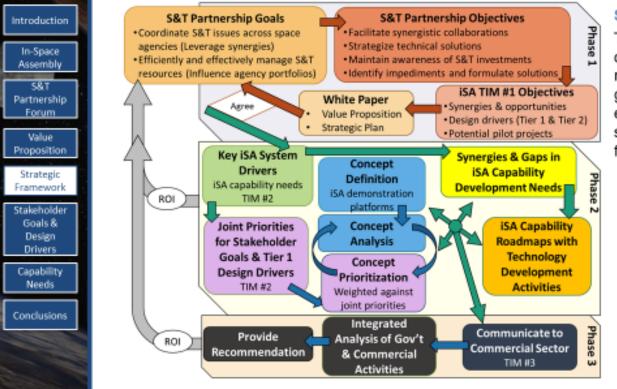
Ę


IRAD "S" Curve & the XST

 Key to appropriately overlapping the Government "S&T Management" with the "Heart of the Industry IRAD"

- Coordinate existing efforts & programs (e.g., SBIR/SB Tech Transfer, University Research, Rapid Innovation Fund, DoD Tech Transfer, Commercialization Readiness, etc.)
- Leverage these programs in conjunction with IRAD

Space Science & Technology (S&T) Partnership Forum: Introduction

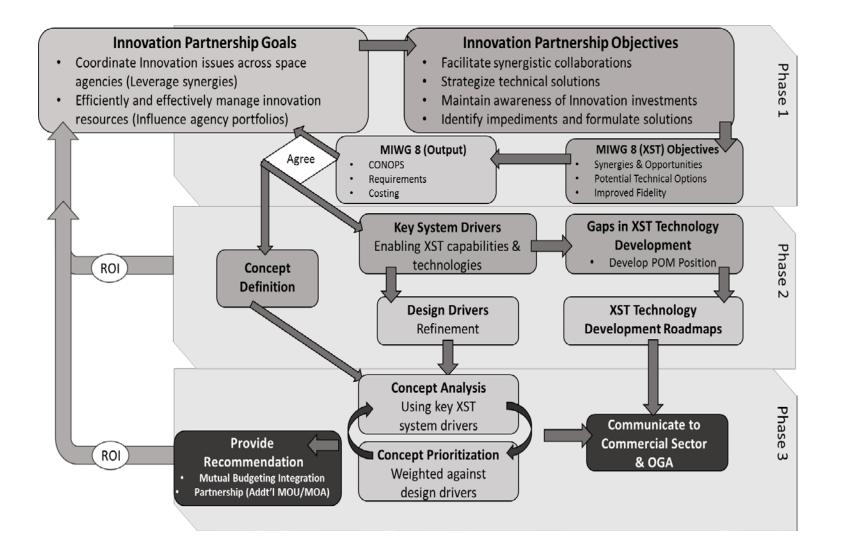

Aim to identify cross-cutting applications & benefits of developing a robust iSA capability for future space assets

Under NASA iSA Analytics

- Four Concepts were considered:
 - Space Logistics (key enabler short-mid term emphasis with a family of technologies & program options)
 - Developmental Test (key enabler short-mid term emphasis for S&T pervasive technologies)
 - Space Power (mid-long term emphasis)
 - Space Situation Awareness (short term emphasis)
- These were scored along with the other S&T Partnership concepts
- What follows is the description of the analytics & the way ahead for one of those:
 - Developmental Test: Advanced Space-Based Testbed (XST)

iSA Framework is Multi-Purpose

S&T Strategic Framework for iSA: Overview



Strategic Framework:

The strategic framework lays out how the advantages of new robotic technologies with government and commercial engagement will enhance inspace capabilities and reduce future costs.

14

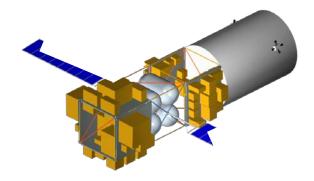
Modified iSA Flow for XST Use

Concept: "Advanced Space-Based Testbed (XST)

- Devise an in-space (orbital) facility primarily for DT but allow options for:
 - Joint/Cross Agency T&E
 - Collaboration improves cost effectiveness
 - Operational T&E
 - Can be an off-ramp
 - Pervasive S&T
 - Rapidly leverage 6.1-6.3 (into field faster using 6.4)

Concept: "Advanced Space-Based Testbed (XST) (cont)

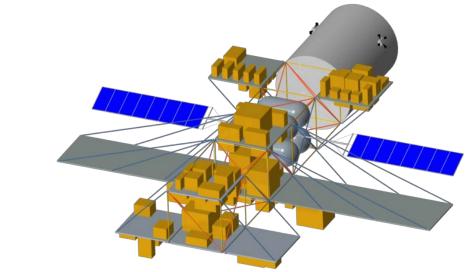
- Technology from Industry (IRAD, CRADA)
 - Move development from primarily industry to industry & gov't
 - Better understand the intellectual property & data rights
 - Improve requirements generation/refinement earlier & concurrently
 - Shortest path to Operational Test & Evaluation (OTE)
- Training
 - Government personnel need hands-on knowledge
 - Operational logistics & operational training on new technologies


What is XST

- This T&E platform vision will be:
 - Partially or fully autonomous assembly with space robotics utilizing iSA techniques
 - Serviceable & persist over a long-lifetime
 - XST subsystems, assemblies, units, & test articles can be added, subtracted, & reconfigured
 - Maintain positive attitude control, electrical power, & thermal control margins
 - Operate at LEO, possibly sun synchronous trade analysis based on set of test candidates

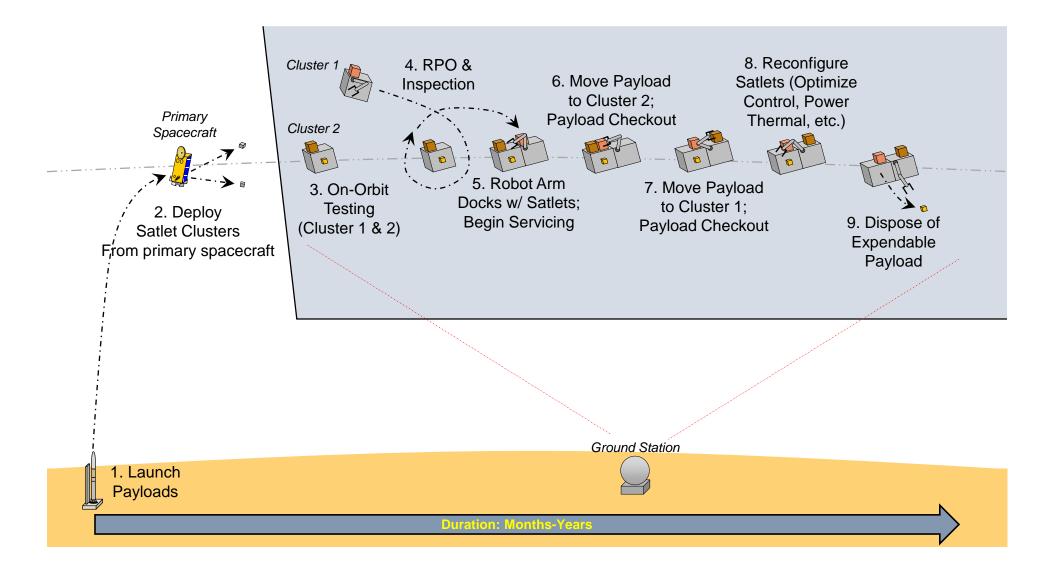
What is XST (cont)

- The XST will employ a set of Standardized-User Defined Adapters (UDAs) to interface the test items to the test platform.
 - These UDAs can accommodate a variety of user test articles, test equipment and/or demo hardware.
 - In turn, the UDA will be integrated to the XST structure using autonomous, dexterous robotic space vehicle systems.
- Initially, NASA Structure is free flyer w/ potential for expansion; uses iSA to modify structure & to reconfigure test candidates & XST modular assemblies


NASA Structure Packaged for Launch

Deployed

Possible Design For "XST"


- Basic NASA structure-using iSM, iSA, & iSS (i.e. Restore-L) to:
 - Add Instrumentation/Communication
 - Add ADCS
 - Add UDA points for test candidates/eqt/etc.
- Logistics brings new test candidates & modular assemblies to XST

Mini-XST Demonstration for the Near Term

- Configure two separate satlet clusters;
 - Cluster #1 will be a freeflyer & accommodate a couple of test articles/payloads
 - One of those payloads will be a tele-robotically operated dexterous robotic arm
 - Cluster #2 will be a freeflyer & accommodate a couple of test articles
 - One of the other two payloads long-duration testing > 1 year
 - One of the other two payloads short-term & disposable via subsequent release
- Perform rendezvous proximity operations, docking, robotically remove, move, & install test articles

Mini-XST Demonstration OV-1

Conclusion

- Need to accelerate Space Acquisition
- One way to increase acquisition speed is to enhance/increase DT
- XST concept could rapidly provide that DT
- S&T iSA Space Partnership Forum collaboration can lower cost
- Create a broad based platform/facility for energizing rapid space improvements
 - Large NRE already paid
 - Mini-XST Demonstration possible 2-3 years

Key Reference Documents

- SMC Orbital/Sub-Orbital Hazards & Debris Mitigation User's Handbook
- NASA-HANDBOOK 8719.14 "Handbook for Limiting Orbital Debris 2018-04-10
- NASA-STD-8719.14A Process for Limiting Orbital Debris 2011-12-08
- Space Debris Mitigation Standard, NASDA-STD-18, March 28, 1996
- U.S. Government Orbital Debris Mitigation Standard Practices, Dec 2000
- SMC Standard SMC-S-015 (2010) Disposal of GEO Satellite
- Open Mission System/Universal Command & Control Interface (OMS/UCI) standard, & Modular Open Systems Approach (MOSA)
- Digital Engineering (DE) Strategy, Department of Defense (DoD), June 2018 DoD DE page (reference): <u>https://www.acq.osd.mil/se/initiatives/init_de_pol.html</u>
- Multiple AIAA Papers at SPACE 2018 on iSA (Erica Rodgers, et al.)
- Ewart, R., Betser, J. "Innovation Strategies: Maximizing Payoff of Industry Research & Development Investments for National Security Space", AIAA Space Conference & Exposition, 2015. 4473