Opportunity and Progress of Carbon Nanotube Conductors for Space Power

Dr. Brian J. Landi Professor of Chemical Engineering

$RIT \mid \text{Rochester Institute of Technology}$

Space Power Workshop

Torrance Marriott Redondo Beach, Torrance, CA April 1–4, 2019

RIT Advantages of Carbon Based Conductors Flexure Tolerance Corrosion Resistance Mass Savings 400 1.0 1.0

Brian J. Landi, Ph.D.

RIT Applications for High Conductivity Carbon Conductors ³

Data Cable Prototypes

Jarosz, et al. ACS Appl. Mater. Interfaces 2012, 4, 1103–1109.

Puchades, I. et al. ACS Appl. Mater. Interfaces, 2016, 8, 20986–20992

CNT-MMCs for Solar Cell Electrodes

FA9453-14-1-0232

RIT

Technology Goal: Overcome loss of active area in advanced thin film and IMM solar cells contacts due to mechanical vibration and thermal shock which "crack" grid fingers.

RIT U.S. NAVAL RESEARCHL LABORATORY

Radiation Effects in CNTs

RIT Factors Inflencing Bulk CNT Conductivity

1. Alignment (Network Properties)

• Electrical transport is ballistic along the length of CNTs, thus, axially aligned CNTs have better conduction in that direction.

2. Intra-CNT Transport (Intrinsic CNT Properties)

- Diameter Dependent
- Improved by Purity and Chemical Doping

CNT chemical doping is due to non-covalent surface adsorption of electron donating or withdrawing species.

- 3. Inter-CNT Transport (Network Properties)
- Doping reduces tunneling barrier.
- Organization of CNTs [bundles] affects density and cross-sectional area.

Conductivity Specific Conductivity $\sigma = \frac{L}{RA}$ $\sigma_s = \frac{\sigma}{\rho} = \frac{\frac{L}{RA}}{\frac{M}{LA}} = \frac{L^2}{RM}$

RIT

CNT Purification and Wire Fabrication

<u>Wire fabrication Approaches – Top Down vs. Bottom Up</u>

Radial Densification

Alvarenga, J.; et al., Applied Physics Letters, 2010, 97, 182106

Superacid Dispersion and Extrusion

Brian J. Landi, Ph.D.

- The noble metal halides and halides represent the best improvement in conductivity, even over strong acids. The lack of conductivity improvement in all high-electrochemical potential species may due to low dopant adsorption or competing solvent effects.
- CNT chemical doping is due to non-covalent surface adsorption or charge-transfer complexes of electron donating or withdrawing species (i.e. n- or p-type doping).

Puchades, I. et al. J. Mat. Chem. C. 2015, 3, 10256

Brian J. Landi, Ph.D.

RIT

Dispersion in CSA and Coagulation

<u>Superacid</u> –an acid with an acidity greater than that of 100% pure sulfuric acid

Chlorosulfonic acid (CSA) is used in several studies to disperse CNTs

Protonation of CNTs leads to Dispersion.

[Davis et al. Nat. Nano. 2009, 4, 830]

Filtered CSA Films show crystallinity using microscopy, but no preferential alignment

CNTs in well-aligned aggregates provide maximum conductivity

Shear forces on coagulating dispersion induce alignment which is exploited using a syringe needle in extruded wires.

SWCNT Wire Fabrication

 High-purity SWCNT wires extruded from CSA resulted in highest reported conductivity for acid-doped wires.

RIT

- Thermal imaging determined thermal conductivity of 300 W/mK.
- Coagulant composition (acetone) and low temperature directly affect wire uniformity through kinetic passivation vs. reaction with acid and decomposition – exceeding 5 MS/m.
- Doping the best performing wire with IBr lead to an RIT record of 5.7 ± 0.5 MS/m.

Bucossi, A. et al. ACS Appl. Mater. Interfaces, 2015, 7, 27299.

*Tsentalovich, Dmitri E., et al. ACS applied materials & interfaces 9.41 (2017): 36189-36198.

RIT Wires from NCTI Sheets and Failure Current Testing

Cress, C.; et al., Journal of Applied Physics, 2017, 122, 025101

Temperature (°C)

0.0

~490°C

Time (min.) Brian J. Landi, Ph.D.

- Preventing oxidative failure of extruded SWCNT wires enables them to reach maximum current densities greater the fuse law calculations for aluminum.
- SEM analysis shows abrupt failure of NCTI yarns in inert environments where extruded SWCNT wires achieve higher max current density and damage of materials.

Considerations in Design of Hybrid Conductors

RIT

>800 m of Cu in standard electric vehicle stator <u>youtube.com/watch?v=</u> nZkyfZqlptA

 – I²R losses and excess mass leads to inefficiencies in wire electrical transport (ex. Motors).

 Operation at 150-250 °C exacerbates the problem due to the positive temperature coefficient of resistance (TCR) of most metals used.

OPPORTUNITY

- Carbon conductors are ~10x lower conductivity than Cu, but have improved TCR and density.
- Metal integration can bridge CNT:CNT junctions dependent on deposition technique and "wettability".
- A hybrid has potential for higher conductivity and better TCR at lower copper mass.

*Bucossi, A. et al. ACS Appl. Mater. Interfaces, 2015, 7, 27299–27305

Experimental CVD Approach

RIT

Precursor vaporized and thermally decomposes onto CNT surface during Joule heating of CNT Wire.

Landi, B.J., et al. Prov. Patent App. No. 62/698321, 2018. Leggiero, A.P., et al. ACS Appl. Nano Mater. 2019, 2, 1, 118-126.

SEM reveals metallic nanoscale particulate on roving and penetration into the CNT network based on FIB-SEM.

RIT

Applied Current Control of Deposition

- Thermal images of roving under applied current in air show that between 200-300 mA, the temperature appears to cross over the deposition temperature of Cu(tBAOAC)₂ (>225°C).
- SEM analysis of samples from bias at 300 and 400 mA show uniform particle distribution.
- Samples biased at 400 mA had a slightly higher rate of failure.

RIT

17

Conductivity of Cu(tBAOAC)₂ Seeded and Electroplated Samples

Cross-sectional area was evaluated from optical and SEM images to calculate conductivity.

The 94.2% Cu-CNT hybrid conductor achieves a high conductivity of 28.1 MS/m for its copper mass loading, 569x CNT starting conductivity.

