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Advantages of Carbon Based Conductors
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Carbon based conductors lead to benefit
from increased flexibility, corrosion
stability, and reduced density.

P. Jarosz, et al. Nanoscale, 2011, vol. 3, pp. 4542-4553.
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RIT Applications for High Conductivity Carbon Conductors ]
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Puchades, I. et al. ACS Appl. Mater. Interfaces, 2016, 8, 20986—20992
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RIT CNT-MMCs for Solar Cell Electrodes 4
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Technology Goal: Overcome loss of active area
in advanced thin film and IMM solar cells
contacts due to mechanical vibration and
thermal shock which “crack” grid fingers.
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Cox, N. et al. ] Mater Sci, 2016, 51, 10935-10942.
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RIT Radiation Effects in CNTs 5

LABORATORY

Cross-linking from Radiation + Annealing Effects of Doped Separated SWCNTs
Rossi, J. et al. J. Phys. Chem. C 2016, 120, 15488-15495 Puchades, I. et al. IEEE TNS, 65, 2018, 573.
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RIT Factors Inflencing Bulk CNT Conductivity 6
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RIT CNT Purification and Wire Fabrication 7

Wire fabrication Approaches — Top Down vs. Bottom Up
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RIT Chemical Dopant Influence on CNT Conductivity 8
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 The noble metal halides and halides represent the best improvement in conductivity, even over strong
acids. The lack of conductivity improvement in all high-electrochemical potential species may due to
low dopant adsorption or competing solvent effects.

e CNT chemical doping is due to non-covalent surface adsorption or charge-transfer complexes of
electron donating or withdrawing species (i.e. n- or p-type doping).

Puchades, I. et al. J. Mat. Chem. C. 2015, 3, 10256
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RIT Dopant Delivery in CNT Sheets: Solvent Matters 9
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FT— Proposed Mechanism:

Low solvent dipole moment

l Weak solvent

Weak solvent interaction with
interaction with CNTs

IBr .

IBr:Solvent interactions show prominent solvatochromic
behavior with varying solubility and doping effectiveness.

More available
doping sites

¥

Equilibrium shifted towards
IBr adsorbed to CNTs

¥

Higher doped CNT conductivity

A.R. Bucossi, et al., ACS Appl. Nano Mater. 2018, 1, 5, 2088-2094
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RIT

Dispersion in CSA and Coagulation

\10

Superacid —an acid with an
acidity greater than that of
100% pure sulfuric acid

Chlorosulfonic acid (CSA) is
used in several studies to
disperse CNTs

Protonation of CNTs leads

to Dispersion.
[Davis et al. Nat. Nano. 2009, 4, 830]

Filtered CSA Films show
crystallinity using
microscopy, but no
preferential alignment

=
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CNTs in well-aligned
aggregates provide
maximum conductivity

Shear forces on coagulating dispersion induce alighnment
which is exploited using a syringe needle in extruded wires.
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RIT SWCNT Wire Fabrication 1

. . . - * Rice 2017
e High-purity SWCNT wires extruded from - .
CSA resulted in highest reported ;
conductivity for acid-doped wires. 6] 1T 2018 o
e Thermal imaging determined thermal ] (IBr doped) -
5- RIT 2017 -

conductivity of 300 W/mK.

e Coagulant composition (acetone) and low
temperature directly affect wire uniformity
through kinetic passivation vs. reaction with
acid and decomposition — exceeding 5

RIT 2015

3_: * Rice 2013
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Bucossi, A. et al. ACS Appl. Mater. Interfaces, 2015, 7, 27299. Wire Diameter (um)

*Tsentalovich, Dmitri E., et al. ACS applied materials &
interfaces 9.41 (2017): 36189-36198.
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RIT Wires from NCTI Sheets and Failure Current Testing | 12
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RIT Max Current Density for CNT Conductors \ 13
Summary of Results g SWCNT
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e Preventing oxidative failure of extruded SWCNT wires enables them to reach
maximum current densities greater the fuse law calculations for aluminum.

e SEM analysis shows abrupt failure of NCTI yarns in inert environments where
extruded SWCNT wires achieve higher max current density and damage of materials.



2019 Space Power Workshop; Opportunity and Progress of Carbon Nanotube Conductors Brian J. Landi, Ph.D.

RIT Considerations in Design of Hybrid Conductors 14

>800 m of Cu in
~ standard electric
. vehicle stator

youtube.com/watch?v=
nZkyfZqlptA

— I2R losses and excess mass leads to inefficiencies in
wire electrical transport (ex. Motors).

— Operation at 150-250 °C exacerbates the problem
due to the positive temperature coefficient of
resistance (TCR) of most metals used.

OPPORTUNITY

e Carbon conductors are ~10x lower conductivity
than Cu, but have improved TCR and density.
* Metal integration can bridge CNT:CNT junctions

dependent on deposition technique and
“wettability”.

e A hybrid has potential for higher conductivity

and better TCR at lower copper mass.
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*Bucossi, A. et al. ACS Appl. Mater. Interfaces, 2015, 7, 27299-27305
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RIT Experimental CVD Approach 15
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Precursor vaporized and thermally decomposes
onto CNT surface during Joule heating of CNT Wire.

Landi, B.J., et al. Prov. Patent App. No. 62/698321, 2018.
Leggiero, A.P., et al. ACS Appl. Nano Mater. 2019, 2,1, 118-126.
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RIT Applied Current Control of Deposition \ 16
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Thermal images of roving under applied current in air show that between 200-
300 mA, the temperature appears to cross over the deposition temperature of
Cu(tBAOAC), (>225°C).

SEM analysis of samples from bias at 300 and 400 mA show uniform particle
distribution.

Samples biased at 400 mA had a slightly higher rate of failure.
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RIT Conductivity of Cu(tBAOAC), Seeded and Electroplated Samples ] 17

Cross-sectional area was evaluated from optical and SEM images to calculate conductivity.
Cross-Sectional SEM

*False color

Sample

Cu(tBAOAC), Seeded +
Electroplated

Copper Mass % 94.2%
Cross-Sectional Area (m?) 3.13E-08
Resistance/Length (Q/m) 1.14
Conductivity (MS/m) 28.1

Electrical Conductivity (S/m)
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Leggiero, A.P., et al. ACS Appl. Nano Mater. 2019, 2,1, 118.
The 94.2% Cu-CNT hybrid conductor achieves a high conductivity of

28.1 MS/m for its copper mass loading, 569x CNT starting conductivity.
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