Compact Telescoping Array (CTA)

Advancement from Concept to Reality

Presented 4/3/19 at Space Power Workshop

Michael McEachen

mike.mceachen@ngc.com

Peter Sorensen

peter.sorensen@angstromdesigns.com

Casey Hare casey.hare@angstromdesigns.com

©2019 Northrop Grumman. All Rights Reserved.

Northrop Grumman – Goleta • 600 Pine Avenue • Goleta, California Tel: (805) 685-2262 • Fax: (805) 685-1369 • E-Mail: info-goleta@ngc.com • Website: http://www.ngc.com

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

- CTA overview concept of operation
 - Deployment sequence
- Review of development activities
 - TRL 8 achieved by multi-unit miniature telescoping boom (flight units delivered)
 - CTA uses same drive mechanism, same detents, etc.
 - AFRL "Gen2" EDU thermal deployments, vibration tests
- CTA benefits for missions under consideration
 - Multi-manifest launch configurations need ultra compact volume and short extents
 - High power in small s/c bus
 - Deep space large PV area for low intensity operation
 - Landers
 - Lunar self-supported vertical deployment for polar lander, full alpha tracking
 - Mars horizontally-deployed via support legs (R. Pappa, et al)

ltem	Gen1 (NASA)	Gen2 (AFRL)	Flight
Launch Cradle	n/a	High fidelity prototype, manually released (bolted)	Use custom tubes, release actuators
Root Staging	n/a	Flight-like	(no change)
Blanket Staging	Manually released (pull pin)	Manually released (pull pin)	Use release actuators
Blanket	Sheet metal "frames" tied to blanket tapes	Composite SPM frames, mesh substrate, individual cell simulators (2 SPMs have actual cells)	Gen3 SPM design with live CICs
Electrical Harness	n/a	mechanically represented (flex on blanket, round on panels)	Custom flex harness
Panel Stays	Flexible cords	Articulated rods	(no change)
Mast	High fidelity prototype	High fidelity prototype (flight-like)	Minor design refinements
Testing Performed	Ambient functional	Ambient functional, thermal functional, stowed vibration	Ambient functional, thermal functional, stowed vibration, electrical

file:///U:\BusinessDevelopment\Marketing%20and%20Strategy\Marketing%20Material\Product%20Data%20Sheets\CTA\CTA%20Component%20Heritage.xlsx

CTA (& Related) Activities

	Lead (partner)	Funding, Title	Time- frame	Key Activities	TRL Advancement	
Completed	AD (NGIS)	AD (NGIS) NASA, CTA 7/15 - CTA system modeling, CAD & FEA, scaling & modeling, Scaling & modeling & modelin		CTA system modeling, CAD & FEA, scaling & model correlation studies. Focused on large (>30kW) systems.	TRL 3 (no hardware built)	
	AD (NGIS) AFRL, CTA Phase 1 SBIR		8/15 - 5/16	CTA system modeling, CAD & FEA, scaling & model correlation studies. Focused on affordability and modularity for commercial systems.	TRL 3 (no hardware built)	
	AD (NGIS)	NASA, CTA Phase 2 SBIR	6/16 - 12/17	CTA EDU, key functional aspects less root hinge and tiedowns. Ground offloaded deployments only.	TRL 4, by laboratory demonstration of high-fidelity prototype system hardware.	
	AD (NGIS)	AFRL, CTA Phase 2 SBIR	3/17 - 9/18	CTA EDU, adding root hinge, tiedowns. Vibration and thermal testing.	TRL 5+ by demonstration of high- fidelity system (less PV)	
	NGIS (MOLLC)	NASA, EESP PFC-CTA Base & Option 1 Phases	10/16 - 4/18	Point Focus Concentrator: Pointing, thermal, system performance, etc. High fidelity prototypes & test hardware development tested in relevant env/ts.	TRL 5-6 of photovoltaic aspects of concentrator array	
	MOLLC (SolAero)	NASA, Phase IIE	10/16 - 4/17	25X Point Focus lens developed, including lens tooling. Lens samples delivered to NASA.	TRL 4 of Point-focus Fresnel lenses for optical concentration	
	MOLLC (SolAero)	.C 9/17 - Cell optimization for high concentration including heat ero) 4/18 spreaders. NGIS is "investor" via EESP Option 1 & 2.		TRL 4 of PV optimized for high optical concentration		
	NGIS (NASA LaRC)	NASA, CIRAS (Tipping Point)	10/16 - 10/18	In-flight assembly technology demonstration program. Prototype CTA wing built to validate robotic installation and deployment.	TRL 4-5 of mechanical platform suitable for in-space assembly	
Current	NGIS (commercial)	(proprietary)	6/18- ongoing	CTA for multi-unit & constellation spacecraft	Design for manufacturability and PV accommodation	
	NGIS	IR&D	11/18- ongoing	Refinement of SPM design, environmental testing of PV populated SPMs, mast design refinements & testing	TRL 6 of telescoping truss TRL 6 of populated SPMs	
	NGIS	AFRL ASSISTT	11/18- ongoing	SPM mfg scale-up; incorporation of refined design into full- system prototype	TRL 6 of full CTA wing (including populated SPMs)	
ated	NGIS (commercial)	(proprietary)	9/16 - 9/18	Miniature composite telescopic mast system EDUs, PDR/CDR, multiple flight units	TRL 8 of miniature telescopic mast system	

\\atk.com\CA38\BusinessDevelopment\Marketing and Strategy\Marketing Material\Product Data Sheets\CTA\CTA RELATED ACTIVITIES.xlsx

NORTHROP GRUMMAN

Activities and Accomplishments

file:///\atk.com\CA38\BusinessDevelopment\Marketing%20and%20Strategy\Marketing%20Material\Product%20Data%20Sheets\CTA\CTA%20TRL%20Roadmap.mpp

CTA Advantages – Structural Efficiency

- Wing is deployed and supported by an **optimized**, **high modulus** carbon fiber **central lattice truss**
- Truss avoids challenges associated with alternative structures:
 - Thin shells, subject to defects and buckling
 - Structural optimum (EI/mass) is a large diameter, thin-walled tube which cannot be fabricated thin enough to be optimal, and suffers buckling limitations
 - Material tradeoffs for strain capability
 - Elastic tubes use standard modulus carbon, isotropic layup. E = 12-15 msi
 - CTA truss uses unidirectional, high modulus fiber. E = 32 msi
 - Creep issues (temperature, storage life limitations)
 - Elastic deployables are highly strained; CTA truss is always un-strained
 - Need for a separate standoff ("yoke") structure
 - Most array designs require a separate beam with hinges; CTA's yoke is integral
 - Bending loads in blanket spreader beams
 - CTA's stays eliminate bending loads which drive spreader volume and mass
 - Stowed loads driving structural design
 - CTA makes dual use of blanket end support beams for compact stowage & efficient blanket stack containment

Blanket Assembly

Blanket Assembly

Wing Assembly

Launch Cradle

- Cradle includes cup-cone constraints between stanchions and panels
- Cradle arms spring out upon release, allowing wing to stage out 90°

Root Hinge

Spring/ damper, latching root hinges are modified vs. GeoStar 3 (for wide footprint)

Stowed FEA

- First mode predicted 68 Hz
 - (panel bending)
- Vibration testing demonstrated
 >100 Hz first mode
 - FEM smeared blanket mass is conservative
 - SPM frames contribute significant bending stiffness

Wing Testing (cont'd)

- Thermal deployments
 - Full deployments at hot (+60°C)
 - Result: full deployment success
 - Full deployments at cold (-50°C)
 - Result: full deployment success

THERMAL TEST CHAMBER NGIS Goleta CA 16' x 16' x 28'

Stiffness Testing

- Gen2 mast measured
 with blanket retracted
 - Tip lateral stiffness
 - Top blanket torsion stiffness
- Results compared with FEA and closed-form predicts
- Discrepancies noted; sources of compliance identified and targeted for design refinement and/or further testing

Vibration Testing

Test details

- Full level sine sweep prior to random
- Random Spectrum per GEVS, with notching to limit response per MAC (18 g's)
- X-axis ~9 g's RMS
- Y-axis ~10 g's RMS
- Z-axis ~9 g's RMS
- 60 sec duration
- Increment loading, -12/-9/-6/-3/0
 dB with inspections between
- 0.5g sine sweep before RV and after full level

sine sweep					
G's					
6					
4					

Sweep

4 oct/min

STOWED VIBRATION TEST SETUP

Vibration testing – observations

- Pre and post low level vibe overlays match well, no frequency shifts
- Successful demonstration of stowed / launch configuration
 - SPM shear restraint tabs were damaged during full level sine sweep in the X-axis
 - Previously known issue, refined SPM design addresses
 - Lead screw tip snubbing reduce clearance for more consistent response at tip bulkhead
 - Previously known issue, new tip bulkhead design addresses

VIBRATION SETUP - ROOT

LEAD SCREW TIP PADDING

Gen2 EDU wing weight

NORTHROP GRUMMAN

- As built: 81.89 lbs
- Per CAD: 80.81 lbs
- CAD within 1.3% of actual
- Weights include 3.9 lb "GSE" root plate and design concessions for cost/schedule
- See following for adjustments

			Mass P	ropertie	ès		
Analysis	Fea	ture					
 Solid Quilt: 	geor	netry					
Coordina	te sy	stem:	Sel	ect item	s		
			🖌 Us	e default	t		
Density:		1.000	000e+0	0			v
Accuracy	/: [0.000	01000				•
VOLUMI SURFAC AVERAC MASS = CENTEF X Y Z	E = 2 CE AF GE DI 8.0 8.0 8.0 8.0 7 8.0 8 8.0 7 2.	2.8899 REA = ENSIT 81041 GRA\ 53141	9784e+0 8.8295 TY = 2.1 5e+01 F /ITY with 189e-02	3 INCH 196e+0 7962290 POUND n respec 5.7796	^3 4 INCH^2 e-02 POU tt to _G02 216e+00	IND 200N 3.13	
4						•	i
Quick	-	Mass	_Prop_				

8 189.

HATTAN @ ARDS.

- EDU is approx. 18% heavier than a "flight-optimized" wing of that size
 - Minimal impact due to cost/schedule limitations
- CTA design (validated by EDU hardware) projected to achieve 156 W/kg with a 1.1 kg/m2 PV blanket

System Mass Elements (kg)	Gen2 EDU	"Flight" (6 bay)	"Flight" (12 bay)	EDU vs. Flight Comment	12 bay Flight comment
PV Blanket	14.8	14.8	33.7	EDU included 1.3 kg/m2 blanket (conservative SoP)	1.1 kg/m2 for optimized PV
Electrical harness	2.0	2.0	9.7	No change - EDU construction "flight-like"	No change
Mast	3.0	2.8	5.4	No change - EDU construction "flight-like"	No change
Blanket Panels	6.3	2.8	2.8	EDU panels were COTS CFRP; flight will be custom	No change
Top Panel Hinge	0.1	0.1	0.1	No change - EDU construction "flight-like"	No change
Bottom Panel Hinge	0.4	0.4	0.5	No change - EDU construction "flight-like"	No change
Lead Screw & Motor	2.2	1.8	1.8	Flight will be lightweighted (thinner walls)	No change
Mast Root Hinge	0.8	0.8	0.8	No change - EDU construction "flight-like"	No change
Stays	0.3	0.3	0.3	No change - EDU construction "flight-like"	No change
Launch Cradle	3.8	2.8	2.8	EDU tubes were COTS CFRP; flight will be custom	No change
Total Wing Mass*	33.7	28.6	57.8		
Mast root plate	1.8	0.0	0.0	EDU was solid aluminum; flight is application-specific	
Wing BoL power (kW, AM0)	3.3	3.3	9.0		
W/kg	98	115	156	(6 bay wing metrics are for reference only)	

* Mast root plate excluded; EDU had solid aluminum "GSE" plate

Configuration Flexibility

- CTA benefits for missions under consideration
 - Multi-manifest launch configurations need ultra compact volume and short extents
 - High power in small s/c bus
 - Deep space large PV area for low intensity operation
 - Landers
 - Lunar self-supported vertical deployment for polar lander, full alpha tracking
 - Mars horizontally-deployed via support legs (R. Pappa, et al)
- Launch cradle configuration
 - Standard cradle
 - Skewed cradle
- Staging options
 - Root hinge (standard)
 - Yoke
 - Beta joint

Photo credit NASA

Thanks to those contributing to CTA:

Angstrom Designs

- Peter Sorensen
 - SBIR Lead, co-author
- Casey Hare
 - Col
- Tim Halsey
 - CFO

AFRL

- Dave Wilt
- Kyle Montgomery
- John Merrill
- Jeremy Banik
- Bernie Carpenter

NGIS Goleta

- Alan Jones
 - Product Director
 - Jim Spink
 - Program Manager
- Dave Murphy
 - Chief Engr
- Mike McEachen
 - Staff Mech. Engr.
- Chris Peterson
 - Blanket Lead
- Leon Kozlowski
 - Test Lead
- Sam Robinson
 - Analysis Lead
- Shahriar Setoodeh
 - Dynamics Lead
- Jacob Venzor
 - Assembly Lead

NASA

- Geoff Rose
- Richard Pappa
- Martin Mikulas (ret)
- Chuck Taylor
- Jay Warren
- Tom Kerslake
- Matt Chamberlain
- Mike Piszczor (ret)
- Patrick Cosgrove
- Bernie Carpenter
- Tom Kraft
- Brandon Klefman
- Matt Myers
- Fred Elliott
- Jeremiah McNatt