Lithium CF_x Batteries for High Radiation Environments

John-Paul Jones, Keith Billings, Erik J. Brandon, Ratnakumar Bugga, Keith B. Chin, Simon C. Jones, Frederick C. Krause, Jasmina Pasalic, Jessica Seong, Marshall C. Smart and William C. West

Electrochemical Technologies Group

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109 johnpaul@jpl.nasa.gov

© 2019 California Institute of Technology. Government sponsorship acknowledged

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Increasing Interest in a lander for "Ocean Worlds"

A potential Europa Lander could use primary batteries operating for weeks vs. hours

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Radiation Testing

- Jupiter generates a high radiation environment
- Europa is directly in the path
- Possible sterilization procedure for planetary protection
- JPL high dose rate ⁶⁰Co source
 - o 1.3 MeV gamma rays
 - ~100 rad/s
 - o 1 MRad up to 15 MRad

Test articles:

- Rayovac Li/CF_X D-cells
 - LiBF₄ in PC+DME + LiNO₃
- EaglePicher Li/CF_X-MnO₂ D-cells
 - LiClO₄ in PC+DME+THF
- EaglePicher Li/CF_X D-cells
 - LiClO₄ in PC+DME
- 3-electrode Li/CF_X cells
- Cell components (cathode materials, salts, electrolytes, separators)

By RuslikO - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6555923

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Li/CF_x-MnO₂ Radiation cell discharge performance at 250 mA, 21 °C

> Radiation does not appear to impact capacity or energy

OCV and Impedance change drastically for Li/CF_x D-cell after 10 MRad

Quantifying EIS changes over time for Li/CF_x cells

5 mV excitation voltage Measured at 21 °C

2% discharge effects on EIS and OCV

EIS Change as a Function of Radiation Dose Rate (10 Mrad total)

No correlation between impedance and dose rate observed

Discharge Performance as a Function of Radiation Dose Rate

Discharge Performance as a Function of Radiation Dose Rate

Capacity and Energy Following Radiation

- Controls experienced very similar thermal history
- Capacity drops by 2-5 %
- Energy drops by 2-6 %

- Weak correlation between dose rate and discharge performance
- Selected 100 rad/s for future studies

Build 3-electrode cells to understand effects on individual electrodes

Experimental Design

- Li/CF_X-MnO₂ cells typically use LiClO₄ as an electrolyte salt
- Li/CF_X cells typically use LiBF₄ as an electrolyte salt
- Two cells with 0.75 M LiBF₄ in PC+DME (3:7 by vol.)
- Two cells with 0.75 M LiClO₄ in PC+DME (3:7 by vol.)
- Subject one of each to 10 MRad
- Keep one of each for control

Film on cathode of Li/CF_x cell with LiClO₄ salt appears unaffected after 10 MRad

Film on anode of Li/CF_x cell with LiClO₄ salt appears unaffected after 10 MRad

Full Cell Analysis of Film Over Time in 3-Electrode Cells

THF and LiNO₃ additive leads to rapid film growth following radiation

Cathode Analysis of Film Over Time in 3-Electrode Cells

THF and LiNO₃ additive leads to rapid film growth following radiation

Anode Analysis of Film Over Time in 3-Electrode Cells

LiNO₃ additive limits film growth on anode

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Conclusions

- Li/CF_{χ} cells provide the highest available specific energy
- Degradation of the cell has been observed in Li/CF_{χ} D-cells
 - Increased "film" resistance
 - Increased low frequency resistance
 - Increased cell OCV
 - Lower energy (2-6 %)
 - Lower capacity (2-5%)
- "Film" resistance grows in 3-electrode cells with LiBF₄ salt
 - Both anode and cathode are affected
 - Neither THF or LiNO₃ have a positive effect on film growth
- "Film" resistance remains constant in 3-electrode cells with LiClO₄ salt
 - Hope to incorporate other salts into prototype Li/CF_X D-cells

Acknowledgements

The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA), and was supported by the Planetary Science Division.