

By Omri Nissan, David Troy, Nolan Reker, Tomas Svitek

Stellar Exploration, Inc. | 835 Airport Dr suite, San Luis Obispo, CA 93401 | (408)-505-7361

Space Power Workshop, Program Experience - 04/02/2019

Who is Stellar Exploration, Inc.?

Smart Battery Production

EXPLORATI

Iceye SAR Microsatellite Design Requirements

- Battery system to deliver 3kW for 30sec every 90 minutes
 - ~15,000 SAR images in 3 Years
- Battery packs, unregulated +28V (26-34V), are charged by solar panels
- Interface with Solar panels 17 cells x 12 strings
 - ~ 200 W (peak) @ 34-44 V (load, hot/cold), up to 52 V (OC, cold)
- Charging current ~10 A
- mass ~11 kg

POWER SHOULD BE SIMPLE \rightarrow ELIMINATE DESIGN COMPLEXITY while MAINTAINING BATTERY INTELLIGENCE

Battery Specification

Function	Value
Maximum Dimensions	429.5 x 249 x 128 mm
Total Mass	11.13 kg
Output Voltage	28 V
Maximum Capacity	1400 Wh
No Load Standby w/ Modules Awake	120 Days
No Load Standby Time w/ Modules Shutdown	350 Days
Gravimetric Energy Density	126 Wh/kg

HIGHEST POWER DENSITY PER WEIGHT

Smart Battery Block diagram

Balance PCB:

- 1. Module monitoring
- 2. Balancing functions
- 3. Cell charging
- 4. Input and output protection

Mux PCB:

1. Communicate with the master

Master PCB:

- 1. Aggregate data
- 2. Overall Battery Current/Voltage
- 3. CAN interface with spacecraft

Battery BMS - Health and Performance Monitoring
Cell Balancing and Protection

Why Li-ion 18650 Cells?

Samsung INR18650-25R

Charging to 4.2V/cell and discharging down to 2.75V

18 mm

High Energy Density

Calm and Cool during charge

No rapid self discharge

Item	Specification
Nominal Discharge Capacity	2,500mAh Charge : 1.25A, 4.20V,CCCV 125mA cut-off, Discharge : 0.2C, 2.5V discharge cut-off
Charging time	Standard charge : 180min / 125mA cut-off Rapid charge: 60min (at 25°C) / 100mA cut-off
Max. continuous discharge (Continuous)	20A(at 25°C), 60% at 250 cycle
Cell weight	45.0g max

http://dalincom.ru/datasheet/SAMSUNG%20INR18650-25R.pdf

Modularity and Redundancy

- The battery is made of 160 18650 (2500mA) cells
- 8 cells per module
- 5 modules per columns
- 4 columns per battery -> 850Wh, max 1400Wh
- Master PCB has 4 possible inputs of power

This allows for per module redundancy

A watchdog can re-start a battery when such failure is detected

One module can fail, however ALL other 19 modules will still be operational

Mechanical Structure Design

- 3D Printing module encasing
 - Polycarbonate
 - Strength properties
 - Strong, very resistant to impact, extremely tough and durable thermoplastic material (very resistant to temperature)
 - Perfectly good use for radar satellite
 - PEEK
 - Exceptional mechanical, thermal, and chemical resistance properties
 - Better use for optical application due to lower outgassing
- Use off the shelf mechanical components
- Chassis is aluminum CNC + Chromate Coating
 - No weld joint failures

Rapid Mechanical Structure Iterations

Software Design

- FreeRTOS
 - Professionally developed, strictly quality controlled, robust, supported, does not contain any intellectual property ownership ambiguity
 - Free to use in commercial applications without any requirement to expose your proprietary source code

- OBC reference package
 - Python scripts to allow communication with the battery pack using the same interface as the onboard computer will use
 - Scripts are written in such that it should be easy to swap this out for any other CAN interface hardware

Reliable, Robust, and Agile Software

Operational Experience

- 10 Batteries built to date
- 3 batteries in orbit right now

ICEYE-X1, Noatak National Preserve, Alaska

Lesson Learned

- Choose reliable Power Management/Balance IC for cells
- Allow for plenty of margins when it comes to component selection
- Redundancy is important! Design for low level redundancy to eliminate system failure
- 3D printing allows for design flexibility
- Maintain patience

THANK YOU FOR LISTENING!

omri.nissan@stellar-exploration.com

Q&A Session

Backup Slides

STELLAR CXPLORATION

Testing Procedure

- 1. Module Level
 - a. Telemetry link
 - b. EEPROM programing
- 2. Column Level
 - a. Appropriate telemetry
 - b. Discharge/Charge test, Short circuit test
- 3. System Level
 - a. Vibe testing
 - b. 50 Cycle Test (~120A with a ¼ Ohm load for 30 seconds and then allowed to charge for 16 minutes)
 - c. Vacuum Charge/Discharge

VS.

Current Design

