

DEFENCE AND SPACE

Solar arrays for Jupiter missions Europa Clipper and JUICE

Martin Kroon, Ed Bongers, Ron van der Ven, Martijn Smeets Space Power Workshop, April 2, 2019

Mission consortia

ESA mission JUICE

- Launch date: 2022
- Prime contractor: Airbus Defence & Space, Toulouse, France
- Solar array contractor: Airbus Defence & Space, Leiden, the Netherlands
- Photovoltaic Assembly: Leonardo Company, Nerviano, Italy
- Solar cells: AzurSpace, Heilbronn, Germany

NASA mission Europa Clipper

- Launch date: 2023
- Consortium: NASA/JPL, Johns Hopkins Applied Physics Lab.
- Solar array contractor: Airbus Defence & Space, Leiden, the Netherlands
- Photovoltaic Assembly: Airbus Defence & Space, Ottobrunn, Germany
- Solar cells: AzurSpace, Heilbronn, Germany

Background

JUICE

- Azur 3G28 Solar cell characterization covered in ESA study program (TDA)
 - LILT performance
 - Radiation degradation
 - Bare cell and CIC pre-qualification
 - Coupon thermal cycling
- Airbus ARA Mk4 panel substrate technology characterization in B1 phase
 - Radiation hardness of materials
 - Survivability in cryogenic thermal cycling environment
 - Structural properties

Europa Clipper

- Re-use of JUICE technology to the extent possible
- Segment 1 Development phase for confidence testing
 - REASON antenna interface
 - Coupon thermal cycling (different PVA manufacturer)

AIRBUS

Mission objectives

water

Investigate habitability of Jupiter's icy moons

Surface Temp -107°C Possible Melting Ice Fracture Soft Convecting Ice Network ~20 km? **Relatively Smooth** Convection Undersurface Salty Ocean ~100 km? Hydrothermal Circulation

Magmatism

Rocky Mantle

Temp ~ 1300°C

Jovian environment

Radiation

Europa and Ganymede orbits inside intense radiation belts of Jupiter

Europa Clipper fly-bys of Europa

Thermal

- Distance to Sun 5.46~5.03 AU (3.3%~3.7% AM0)
- Solar cell operational temperature ~-130°C
- Cold cycles down to -237°C during eclipse (qualification temperature)

Challenges

mission phase	JUICE	Europa Clipper		
Launch	Ok	Structural load of REASON antenna		
Deployment	Deployment of lateral panels	Retarding torque from REASON harness		
Venus gravity assist	2.2x AM0: high temperature, high current			
Jupiter orbit	Extremely high radiation dose Deep thermal cycling (Jupiter eclipses)			
Ganymede circular orbit insertion	thruster boost (0.22 m/s ² at EOL): 400 Nm bending moment at root	n/a		
Science phase	 extremely low magnetic signature uniform surface potential within 1V 	low magnetic signatureuniform surface potentialEMI REASON antenna		

Solar array design

	JUICE	Europa Clipper	
solar array area (2 wings)	85 m²	102 m²	
panel dimensions	3.45 x 2.48 m	4.13 x 2.47 m	
number of panels	2 wings x 5 panels	2 wings x 5 panels	
deployed wing length	12.4 m	14.1 m	
solar array mass (incl. contingency)	350 kg	571 kg	
number of solar cells (Azur 3G28, 40x80 mm)	23,560	28,120	
1 MeV electrons (behind 300 µm coverglass)	>2 ^e 15 cm ⁻²	>4 ^e 15 cm ⁻²	
EOL power	766 W (@5.03 AU)	728 W (@ 5.46 AU)	

Europa Clipper SA design features

"Standard" ARA Mk4 product family

- CFRP sandwich panels with 22 mm core height
- Passive deployment with spring-motorized hinges
- Synchronisation cables
- Eddy-current damper at root hinge

Additional eddy current damper on inboard panel

Duplicate reinforced panel hinges for extra motorization

Double synchronization cables

Europa Clipper mod's

- increased core height for load capability REASON
- 4x higher hinge motorization due to retarding torque REASON harness
- double synchronization cables and dampers

Honeycomb core height doubled

Europa Clipper design features

Harness

- REASON coax cables routed through CFRP C-channels in panel edge
- Panel edge covered with highly conductive ground shield to reduce EMI (No bleed resistors possible)

PVA

- Azur 3G28 triple-junction solar cells 40x80 mm
- 300 µm coverglass
- Silicon by-pass diode in cropped corner

Charge bleeding

- Coverglass grounding network
- Black Kapton on panel rear side

JUICE solar array design features

- One shot deployment using sequencing mechanisms for release of lateral panels
- Boosts at Venus (0.10 m/s²) in hot condition and Ganymede (up to 0.22 m/s²) in cold, after radiation and thermal cycling
- Lateral panels to reduce bending moments at root and increase deployed frequency
- Yoke panel instead of yoke tube to reduce qualification effort

PVA, Charge bleeding

See Europa Clipper

AIRBI

multi-body analysis of deployment

13

Solar cells

• AzurSpace 3G28 solar cell performs better under LILT than state-of-the-art 3G30

condition	efficiency		
AM0, 25°C	28.0%		
3.7% AM0, 25°C	25.9%		
3.7% AM0, -130°C	34.8%		

- Extensive characterization program lead by ESA
 - LILT performance
 - Electron & proton radiation at low temperature (-150°C)
 - Effect of annealing:
 - degraded cells recover at room temperature
 - no recovery possible during the mission ($T_{max} = -130^{\circ}C$)
 - no exposure to room temperature allowed during on-ground radiation testing
 - test campaigns at Ecole Polytechnique (France) and ONERA (France)

LILT Radiation and annealing tests on Azur 3G28

- Test sequence to determine
 - RF: LILT remaining factors at 3.7% AM0, -120~-150°C
 - AF: Annealing factor at room temperature
 - RFA: LILT remaining factors at 3.7% AM0, -120~-150°C for comparison with AM0 heritage data
 - BOL/EOL temperature coefficients at 3.7% AM0

test chamber ONERA

test chamber Ecole Polytechnique

LILT Remaining factors Azur 3G28

Remaining factors after annealing (RFA):

- Proton degradation at LILT less than at AM0, room temperature
- Electron degradation at LILT higher than at AMO and larger distribution
- Combined protons & electrons represent actual mission fluence of JUICE
- All data at 3.7% AM0, -130~-125°C

Annealing factors Azur 3G28

- Annealing factors from JUICE TDA study by ESA (EP) and Airbus study (ONERA)
- Combined electron and proton radiation performed representative for JUICE
- AF from electron radiation at EP unstable \rightarrow discarded
- Annealing factor of 5.5% used in power analysis (from combined electrons & protons)

AIRBUS

LILT Annealing factors (3.7% AMO)

Radiation tests on materials

- All non-metallic materials subjected to 1 MeV electron radiation test
- Skin adhesive of honeycomb panels tested up to 150 MeV (incl. skin shielding)
- Honeycomb core adhesive failed in the first test

flatwise tensile test result

after radiation in GN₂ and thermal cycling

- Adhesive degraded under radiation in GN₂ purged bag leaving O2 in the honeycomb cells
- No degradation under radiation in vacuum
- Degradation caused by persistent oxygen in honeycomb cells

Cryogenic thermal cycling

JUICE cycling profile	range		no. of cycles			
Life cycle	min. ∘C	max. ⁰C	PFM/FM	VGA coupons	GOI coupons	EOL (QM/DVT)
PFM/FM acceptance	-180	110	4 (TBC)	4	4	4
cycles	-224	-90	6 (TBC)	6	6	6
Earth eclipses	-180	110		3	3	3
Jupiter moon eclipses 1	-185	-90			40	40
Jupiter moon eclipses 2	-195	-90			45	45
Jupiter planet eclipses	-227	-90			53	106

• Both 22 mm and 44 mm thick substrates tested

VGA: Venus Gravity Assist

GOI: Ganymede Orbit Insertion

- Combined DVT/QM panel due to size of cryogenic chamber
- Europa Clipper to be covered in delta test program (-237°C, different no. cycles)

Cryogenic thermal cycling

Wide Range Test Facily at CSL (Belgium) for cryogenic thermal cycling

Small box for coupon testing

Space Pov

Tray (1 of 2) filled with coupons

Proto-panel JUICE

AIRBUS

Structural properties

- Properties after (cryo-) thermal cycling
- Tested at in-orbit temperatures
- No structural damage observed

4-point bending test hot

4-point bending test cold

AIRBUS

Yoke panel ultimate strength

- Max bending moment on JUICE yoke panel: 400 Nm incl. dynamic amplification or 1.4
- Yoke panel interface to root hinge tested

test sample in strength tester

Magnetic performance

- PVA design rules
 - back wiring of strings to minimize magnetic moment
 - antiparallel string configuration to compensate each other's moment
 - twisted circuit harness
 - non-magnetic interconnects and bus bars
- Mobile Coil Facility (ESA-ESTEC) used for magnetic characterization
- All stainless steel parts tested before/after demagnetization
- All stainless steel parts will be demagnetized prior to integration
- Mechanisms have larger magnetic signature than PVA
- Eddy current damper has remarkably low emitted field

unit	magnetic moment after demag. (mAm ²)			
eddy current damper	1.8			
root hinge	5.2			
panel hinge	1.3			
hold-down & release unit	0.9			
PVA panel (incl. 1 string failure)	2.8			

Conclusions

- Solar powered JUICE and Europa Clipper missions to unprecedented environment of Jupiter's icy moons
- Similar environments and similar requirements imposed by instruments
- Existing technology used
 - Azur 3G28 solar cell
 - Airbus ARA Mk4 panel substrate technology
- Test program successfully completed to demonstrate technology for JUICE environment
- Structural verification Europa Clipper panels ongoing

Acknowledgments Europa Clipper

Johns Hopkins University – Applied Physics Lab, Baltimore, MD

- Lee Niemeyer
- TJ Lee
- Ed Gaddy
- Larry Frank

Jet Propulsion Laboratory, Pasadena, CA

- Stephen Dawson
- Andrea Bocaa

Airbus Defence & Space, Ottobrunn, Germany

- Thomas Andreev
- Rene Simon

Azur Space, Heilbronn, Germany

• Victor Khorenko

JUICE

Airbus Defence & Space, Toulouse, France

- Alain Calvel
- Arielle Chastel
- Christophe Sabourin
- Cyril Cavel

ESA - ESTEC, Noordwijk, the Netherlands

- Carsten Baur
- Sam Verstaen

Leonardo Company, Milan, Italy

- Francesco Faleg
- Stefano Riva
- Emanuele Ferrando

Centre Spatiale de Liège, Liège, Belgium

Christophe Grodent

Credits images: NASA, JPL, ESA, JHU/APL, Airbus DS (F), EP, ONERA, CSL Tanguy Thibert

AIRBUS

Space Power Workshop 2019

Thank you

