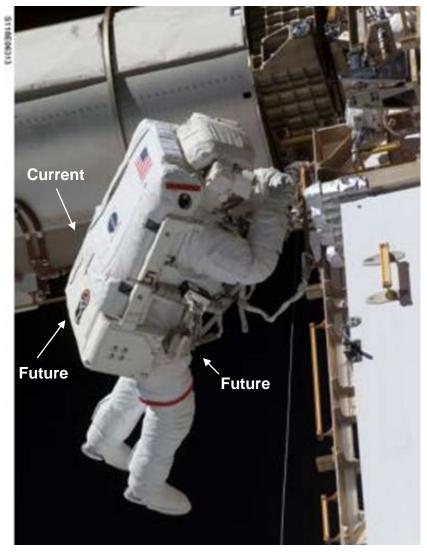


PROPULSION & POWER DIVISION NASA Johnson Space Center, Houston, Texas

Calendar Life Aging of Two Models of 18650 Lithium Ion Cells

S. Russell / E. Darcy EP5/Power Systems Branch

April 26, 2018



Introduction

Preser	nter S	S. Russell		
Date	26 Apr 2	2018	Page 2	

- Interim calendar life test results for two models of 18650 lithium ion cell used in Human Spaceflight
 - Test conditions derived from low rate, low cycle, extended storage application requirements
 - Test cells selected from date code traceable populations
 - Moli ICR18650J, Apr 2007
 - Samsung ICR18650-26F, Dec 2013
- This work is administered by NASA Johnson Space Center in support of the EVA Office and the International Space Station
- Test is performed by Symmetry Resources Inc, Arab AL

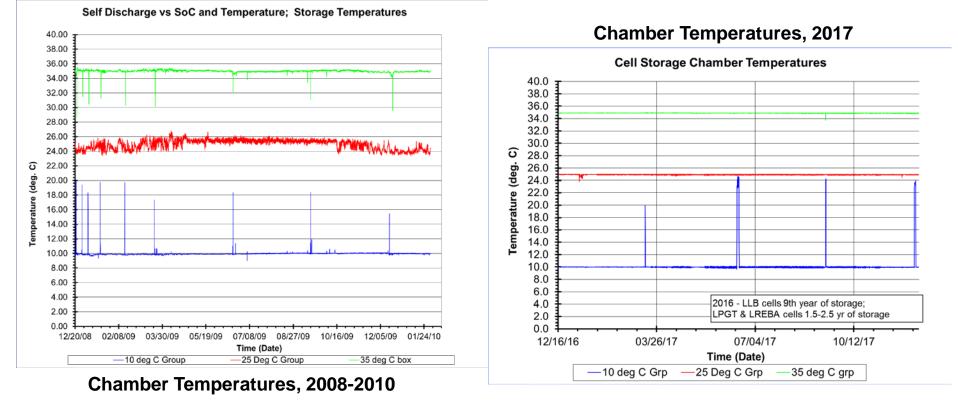
Nasa

Test Protocol

Prese	nter	S. Russell		
Date	26 Apr	2018	Page 3	

- Calendar Life Test is an on-going, full factorial, self discharge and irreversible capacity loss experiment of twelve conditions with 3 groups of 3 cells per condition for a total of 108 cells
 - Storage Conditions:
 - Cells stored in sealed, dry containers
 - SOC: 0%, 30%, 100%, 110%
 - Temperature: 10°C, 25°C, 35°C

- SOC Definition (Moli/eSDI): 0% = 3.2/3.2V 30% = 625/720 mAh charge input 100% = 4.12/4.1V, taper to 60mA 110% = 4.2/4.2V, taper to 60mA
- Cycle Protocol: C/2 cycling between 3.2-4.2V
 - During discharge pulse at 2C for 1s every 10% SOC
 - Terminate final charge cycle at storage condition
- Test Protocol: Measure OCV and/or cycle at ambient conditions
 - Year 1: cycle at 90, 180, 270, and 365 day intervals
 - Year 2+: cycle at 182, 365, and 730 day intervals
 - Group 4 (spare cells) to be tested with 730 day interval if not used
 - When cell group average fails to deliver 1.66 Ah (~70%)
 - Charge at C/2, discharge at 563mA for 5s then 238 mA to 3.2V
 - If unable to deliver 1.66 Ah, terminate storage



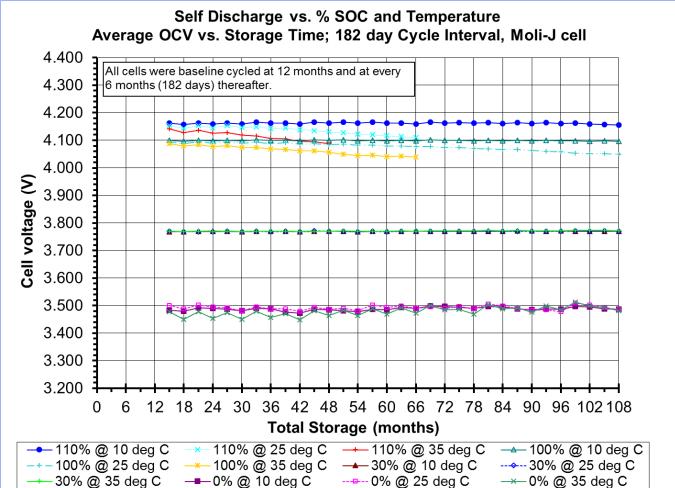
Storage Environment

Presenter S. Russell
Date 26 Apr 2018 Page 4

 Test Temperature has been maintained within +/- 2 °C since 2008 except during periods of cell access or extended power outage (interim years not shown)

Lithium Ion Cell Calendar Life Testing, SRI Job# 83A & 53H

S. Russell


Page 5

Presenter

26 Apr 2018

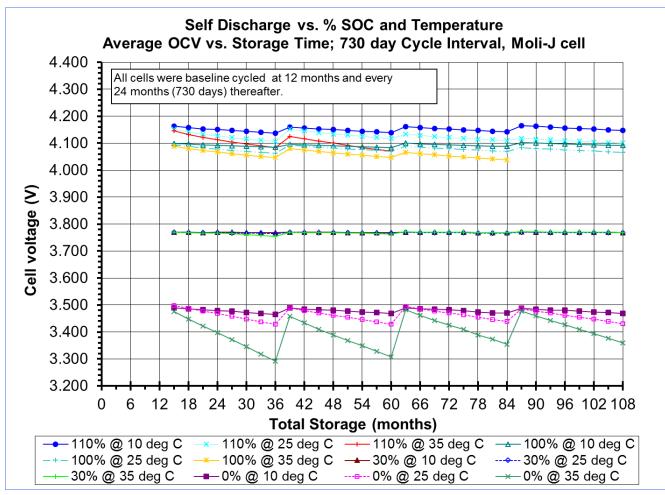
Date

• 108 month self discharge results for the Moli cell, 182 day cycle group

Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

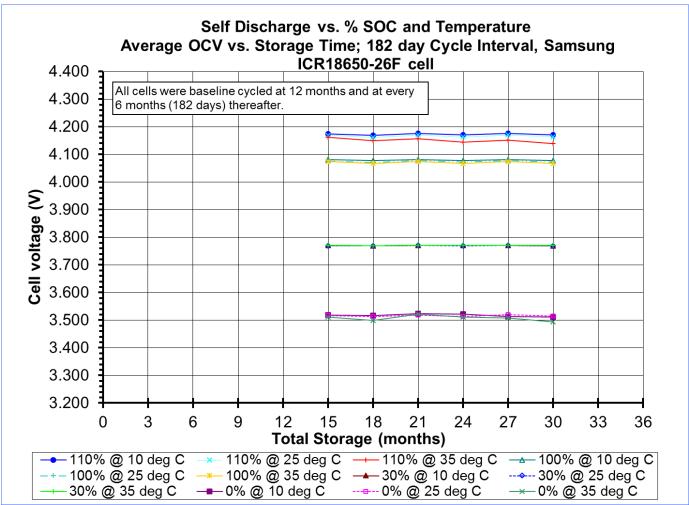
Nasa

• 108 month self discharge results for the Moli cell, 365 day cycle group



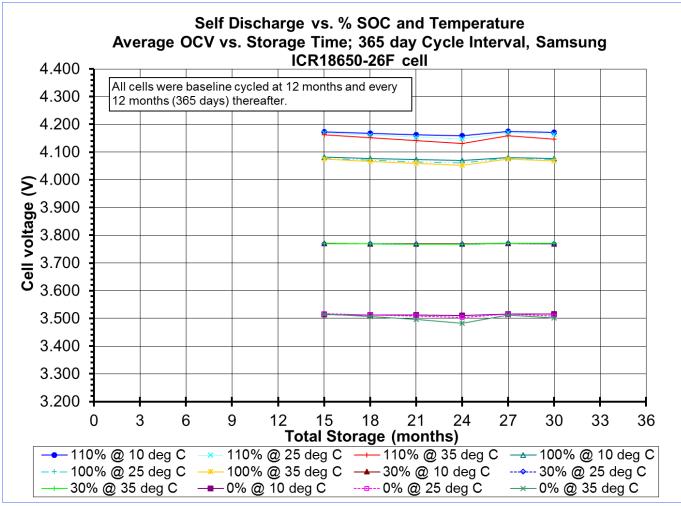
Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

Presenter


108 month self discharge results for the Moli cell, 730 day cycle group •

Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

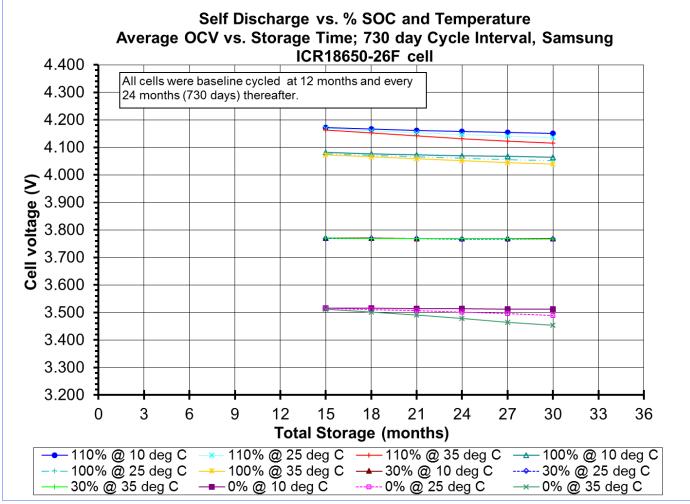
30 month self discharge results for the Samsung cell, 182 day cycle group


Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

Presenter S. Russell 26 Apr 2018 Page **9**

Date

30 month self discharge results for the Samsung cell, 365 day cycle group


Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

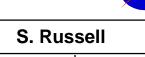
Self Discharge

- Presenter S. Russell
 Date 26 Apr 2018 Page 10
- 30 month self discharge results for the Samsung cell, 730 day cycle group

Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

Cell Failures

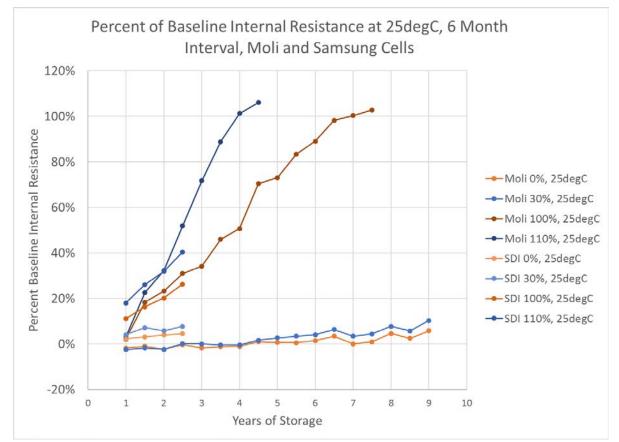
Presenter S. Russell Date 26 Apr 2018 Page 11


- Initial Findings
 - None of the 216 cells have failed anomalously
 - Several high temperature and/or high SOC groupings have failed

Storage Temp.	SoC (%)	Cycle Interval	Total Storage Time to Group Capacity Failure		
(°C)		(mo.)	C/2 Discharge	0.238A Discharge	
35	110	6	24 months	36 months	
35	110	12	36 months	48 months	
35	110	24	36 months	60 months	
35	100	6	42 months	66 months	
25	110	6	42 months	66 months	
35	100	12	48 months	72 months	
25	110	12	48 months	84 months	
35	100	24	60 months	84 months	
25	110	24	60 months	108 months	
25	100	6	72 months		
25	100	12	96 months		
25	100	24	108 months		

Moli J Cell Group Failure Chronology

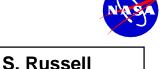
Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018



Date 26 Apr 2018 Page 12

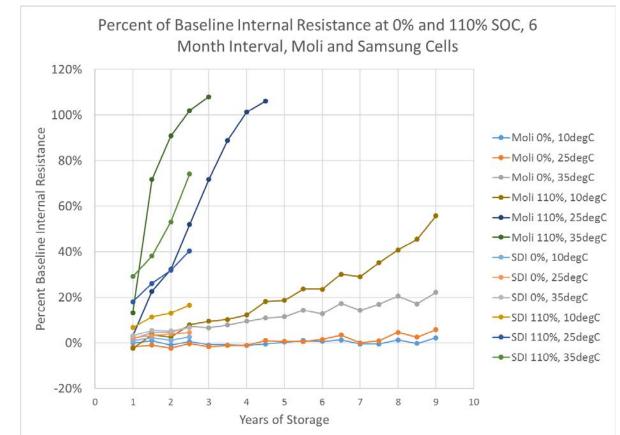
Presenter

- Internal Resistance growth provides a clear indication of cell degradation
 - Effect of SOC at 25 degree C for both Moli and Samsung cell


Data provided by Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

cell

Internal Resistance


Page 13

Presenter

26 Apr 2018

Date

- Internal Resistance growth provides a clear indication of cell degradation
 - Effect of temperature at 0% and 110% SOC for both Moli and Samsung

Data provided by Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

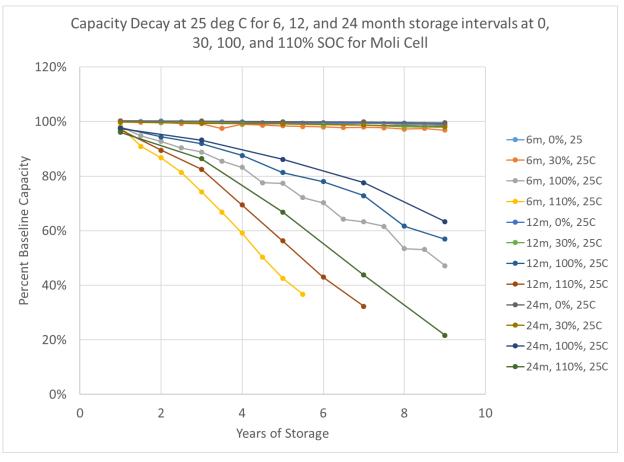
Capacity Decay

Presenter S. Russell
Date 26 Apr 2018 Page 14

- Mechanism does not appear to be strongly coupled to cycling
 - Maximum number of cycles shown on plot are 17

Cycle Life Test Results Shown for Reference Only

5S Moli Cell Cycling


Cycle	Сар	% Cap
1	2.199	100.00%
10	2.198	99.98%
50	2.197	99.94%
100	2.196	99.88%
150	2.195	99.83%
200	2.194	99.78%

SRI Job# 86A, Oct 20, 2009

4S Samsung Cell Cycling

Cycle	Average	% Cap
1	2.381	100.00%
10	2.354	98.85%
50	2.317	97.32%
100	2.273	95.47%
150	2.244	94.24%
200	2.225	93.44%

PCTest Job# 4M1702100015-2, Jan 17, 2018

Data provided by Lithium Ion Cell Calendar Life Testing, SRI Job# 53H & 86A, Feb 20, 2018

Self Discharge

Date 26 Apr 2018 Page 15

S. Russell

Presenter

- 24 Month Interval test provides insight into Self Discharge Rate
 - Rate is minimized at 30% SOC for tested temperatures

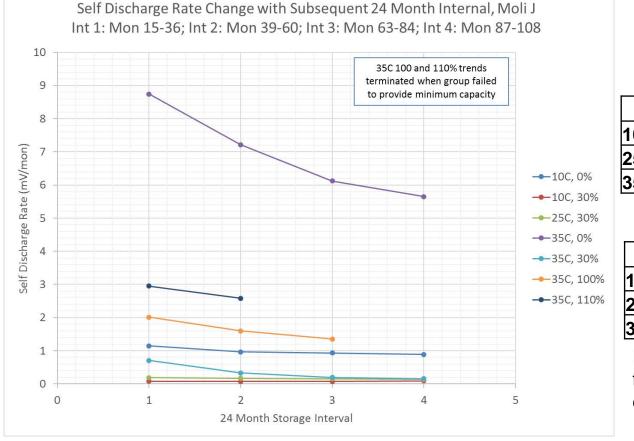
SELF DISCHARGE RATE mV/mon

First Interval (Month 15-36*)

	0%	30%	100%	110%
10C	0.3	0.1	1.2	1.5
25C	1.7	0.2	1.7	2.2
35C	4.0	0.2	2.2	3.1

Rate is calculated by subtracting final OCV from initial OCV and dividing by 15 months. **Note, interval is incomplete.*

Data provided by SRI Job# 53H



Self Discharge

Presenter S. Russell Date 26 Apr 2018 Page 16

 Extended 24 month interval testing offers insight into Self Discharge Rate change with continued storage (30% is still preferred)

SELF DISCHARGE RATE (mV/mon)

First Interval (Month 15-36)

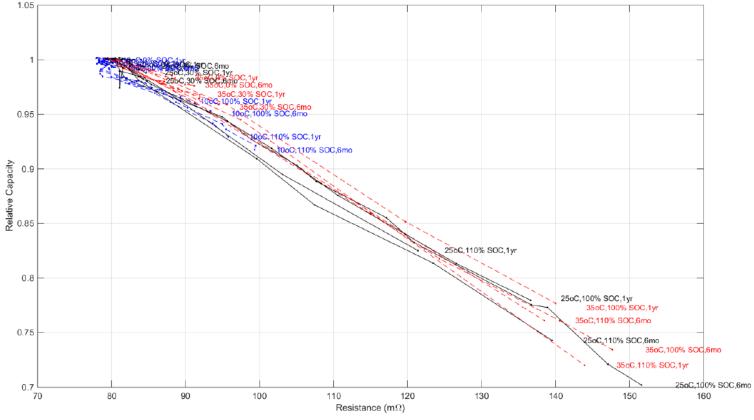
	0%	30%	100%	110%
10C	1.1	0.1	0.7	1.2
25C	8.7	0.2	1.5	2.2
35C	8.7	0.7	2.0	3.0

Fourth Interval (Month 87-108)

	0%	30%	100%	110%
10C	0.9	0.1	0.5	0.8
25C	2.6	0.1	0.8	0.9
35C	5.6	0.2	0.2	0.1

Rate is calculated by subtracting final OCV from initial OCV and dividing by 21 months

Data provided by SRI Job# 83A



Degradation Mechanism

Presenter S. Russell Date 26 Apr 2018 Page 17

 Initial review by National Renewable Energy Laboratory suggests a single mechanism dominates observed degradation, Moli cell only

Preliminary Look at NASA Cell-Life Data, NREL, K. Smith, Sep 18, 2015

Summary

Prese	^{nter} S. Rus	S. Russell		
Date	26 Apr 2018	Page 18		

- Temperature and SOC storage conditions are being assessed on two models of commercial lithium ion cell
 - Test protocols derived from low rate, low cycle, extended life application
 - Test offers insight into self discharge rate and effect of storage condition
 - Results used to validate operational storage conditions and approximate end of asset life
 - Mechanistic modeling has been considered as forward work
 - Current method assumes observed degradation is linear and mathematically averages degradation based on time at condition

 $X(t) = X(t-1) * \left[1 + /-\left(Annual \ Cycle \ Loss * Annual \ Cycles + \frac{\sum \ Condition \ Loss * \ days \ at \ Condition}{365 \ days} \right) \right]$

- Acknowledgements:
 - Brad and Katy Strangways, Symmetry Resources Inc
 - Kandler Smith, NREL
 - Eric Darcy and the EVA Office of the NASA Johnson Space Center
- Questions?