Lithium Ion Cells with Silicon Nanowire Anode for Aerospace Applications

Ionel Stefan CTO, Amprius Technologies 225 Humboldt Ct, Sunnyvale, CA

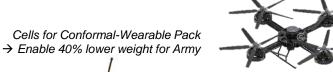
Space Power Workshop, Los Angeles, CA, April 23 – 26, 2018

Amprius Technologies Snapshot

- Venture financed startup founded in 2009 with <u>novel silicon anode</u> materials technologies from Stanford University
- 50 independent patents and patent filings
- Silicon Nanowire Anode Platform has demonstrated over
 1200 Wh/L and 400 Wh/Kg → highest Li ion cells in the industry
- <u>Pilot scale manufacturing</u> for Silicon Nanowire anode in 2018

Amprius Organization

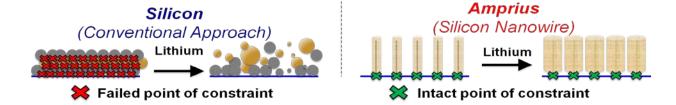
in progress



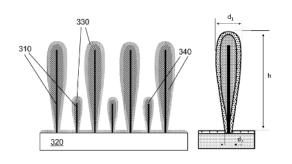
Mission Statement

- Produce Ultra-High Capacity Silicon Nanowire Anodes for Li Ion Cells that have the Highest Energy Density Available
- Amprius Technologies' Cells are Game Changers for Mission Critical **Applications**

Power Cells for Quads → Enable Very Long Endurance



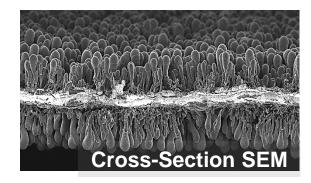
Amprius Solution - Silicon Anode

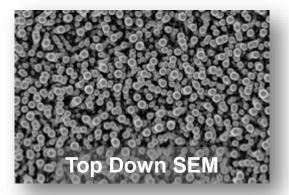


Fundamental Problem of Silicon-Containing Anode

- Silicon swells 300% when charged with Lithium
- Silicon gets pulverized after a few charge/discharge cycles
- Amprius' solution:
 - 1. nanowires tolerate volume expansion and are rooted to substrate
 - nanowires have micro and macro porosity that accommodate swell

Silicon Nanowire Structure

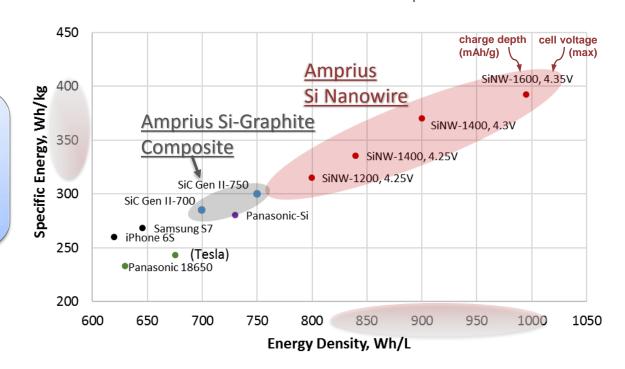




- (54) STRUCTURALLY CONTROLLED DEPOSITION OF SILICON ONTO NANOWIRES
- (71) Applicant: Amprius, Inc., Sunnyvale, CA (US)
- (72) Inventors: Weijie Wang, Sunnyvale, CA (US); Zuqin Liu, Sunnyvale, CA (US); Song Han, Foster City, CA (US); Jonathan Bornstein, Cupertino, CA (US); Constantin Ionel Stefan, San Jose, CA (US)
- (21) Appl. No.: 14/710,103

Major advantages:

- Highest content active silicon material (100%)
- High conductivity and connectivity (rooted to substrate)
- Low tortuosity high rate capability
- Ideal and adjustable porosity distribution
- High mass loading (2-3 mg/cm²)



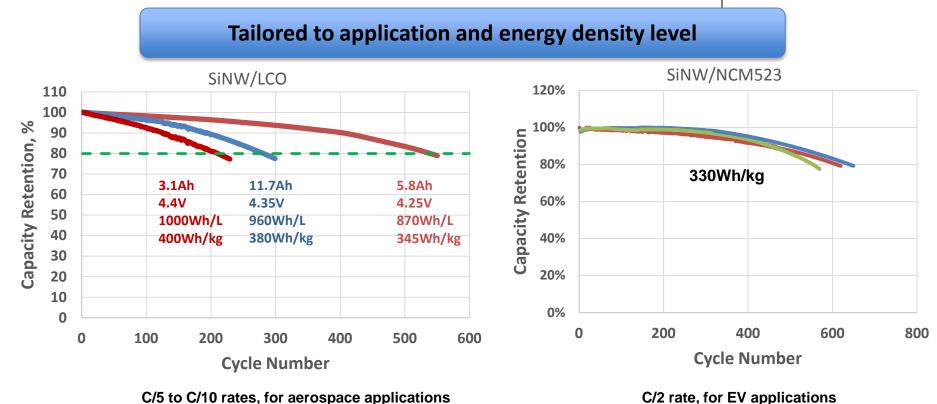
Li-ion Battery Landscape

Silicon nanowire technology performance is adjustable by voltage & charge depth

A unique feature of the Si nanowire anode with variable capacity utilization

Amprius Technologies High Energy Products: Span 4 Ah - 14 Ah Cells

Worlds highest energy density and specific energy Li-ion Cells


Product ID	Capacity Ah	Energy Wh	Wh/L	Wh/kg
ANW4.0-455056	4.0	14.5	1150	424
ANW8.1-4551107	8.1	29.3	1220	430
ANW14.2-8051110	14.2	51.2	1244	437

Voltage range 2.75-4.35V, measured at C/5 rate, Operating temperature range: -20 °C to 45 °C

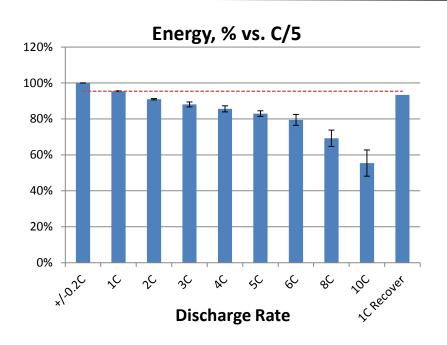
Amprius Technologies High Energy Products: Cycle Life

Amprius Technologies High Power Products: Span 2 Ah - 10 Ah Cells

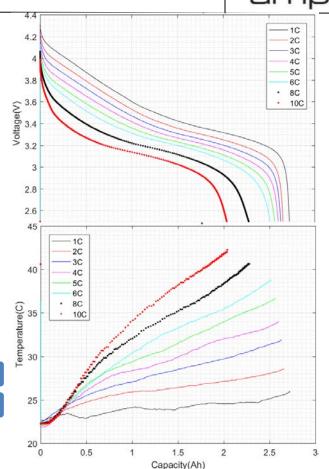
High Power capability with highest energy density and specific energy Li-ion Cells

Product ID	Capacity Ah	Energy Wh	Wh/L	Wh/kg	Capacity Ah	Energy Wh	Wh/L	Wh/kg
	Charge-Discharge Rate: C/5-C/5			Charge-Discharge Rate: 1C-3C				
ANW2.6-405056	2.8	10.1	915	365	2.65	9.0	815	325
ANW10-7550106	10.6	38.4	1000	390	10.1	34.2	885	345

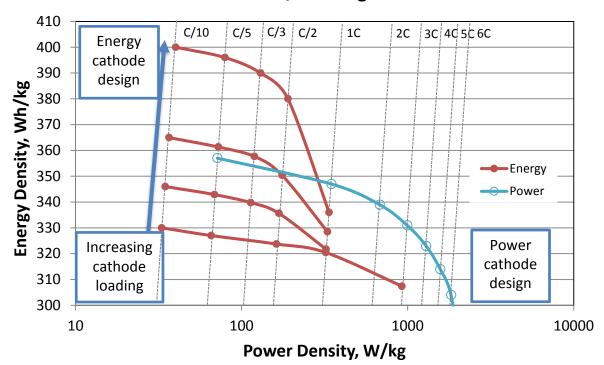
Voltage range 2.5-4.35V at 1C-3C rates


Operating temperature range: -20 °C to 55 °C

Cycle life of 150-300 cycles, depending on operating conditions


Amprius Technologies High Power Products: Rate Capability

>80% relative energy to 6C rate


The temperature increase is small and within operating limits to 10C rate

Amprius Technologies Products: High Energy and Power Capability

Si NW anode/LCO Ragone Plot

It is more efficient to use high loading cathodes if the rate requirement allows it.

The curves can be extended to higher power at similar loadings if the cathode design is changed for power performance

Temperature increase during discharge is an important factor that depends on loading, foil thickness and tab design

Initial Target Markets

Applications that <u>must have</u> ultra-high energy density to be viable product

- Aerospace (UAVs)
 - High Altitude Pseudo Satellites (HAPS) **\$25bn Market by 2025***
 - Lightweight / hand-launched / long endurance drones
 - Long Endurance Multi-rotor drones

Mission Critical

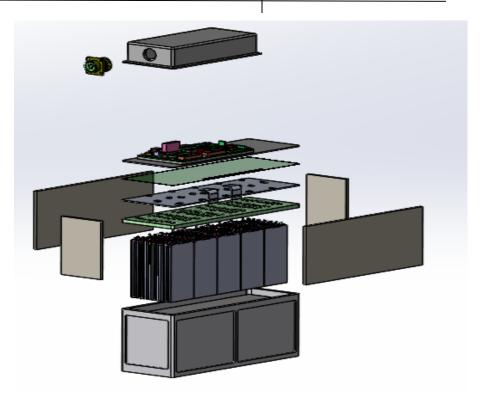
- Wearable / conformal packs
- Autonomous systems (robotics)

* 2016 PwC HAPS market analysis

NASA Phase II Battery Pack

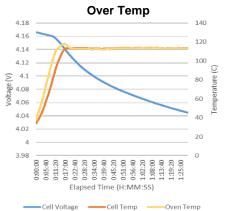
NASA Cell Specifications:

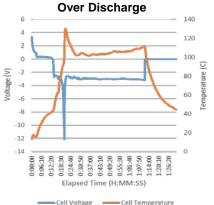
- Cell capacity: 5.8Ah
- Cell energy: 21Wh
- > Energy density: 860 Wh/L
- Specific energy: 345 Wh/kg
- > >200 cycles
- > 2.75-4.25V (Si/LCO)



Products and Applications

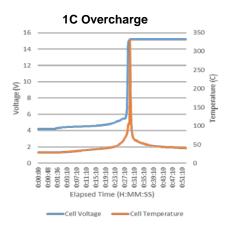
NASA Phase II Battery Pack

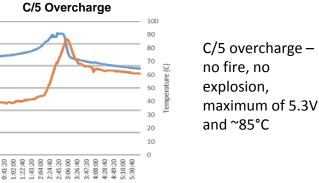

- NASA Battery Specs:
 - Configuration: 8S10P
 - Capacity: 58Ah
 - > Energy: 1625Wh
 - Nominal Voltage: 28V
 - > Energy density: 400 Wh/L
 - Specific energy: 250 Wh/kg
 - >200 cycles



Cell safety and environmental testing

110°C for 1h – no fire, no explosion

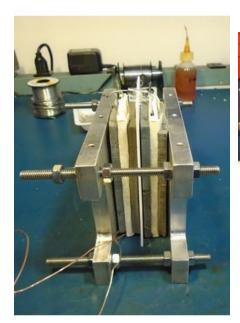


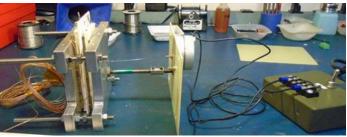


——Cell Voltage ——Cell Temperature

Reversal with 150% excess discharge – vent with <u>no fire, no</u> <u>explosion</u>

1C overcharge and thermal runaway – explosion above 5V, in about 30 minutes (50% overcharge)





Battery safety testing for NASA: Multi-cell thermal runaway test

Module layers and materials were designed for thermal propagation mitigation

Thermal runaway triggered by rotating screw penetrating one cell

No thermal runaway propagation to adjacent cell

Amprius Technologies High Energy Products: Safety



Similar to or better than comparable graphite cells with the same capacity

Application	Test	Result	
Military	UL 1642	Pass	
	Nail Penetration	Pass	
	Drop	Pass	
NASA	Hot Box (110°C/1h)	Pass	
	Short Circuit	Pass	
	Overcharge	Pass	
	Overdischarge/Reversal	Pass	
Commercial/All	UN 38.3	Pass	

High Altitude Pseudo Satellites (HAPS)

Emerging application in Aerospace

- Solar-Electric aircraft serves as <u>High Altitude Pseudo Satellites</u> (HAPS)
- Low launch cost & very mobile
- Amprius' cells will enable over <u>12 weeks</u> endurance (Current endurance is 2 weeks)

Very Long Endurance Batteries for UAS

Battery proposed to Navy for development

Amprius nanotechnology more than doubles endurance

Specification	Current - Standard Battery	Current - Long-Endurance Battery	Amprius Very Long Endurance Battery
Energy (Wh)	349	468	768
Weight (g)	1680	2048	2148
Specific Energy (Wh/kg)	208	223	346
Flight Endurance (hours)	2	3	4.5

Products and Applications

Mission Critical: Conformable Wearable Batteries

Specific Energy

Electronics Burden of War Fighter

Specification	CWB-150 (Fielded Model)	Amprius CWB (June 2017)
"Flexible" battery		Br. de Br
Energy	150 Wh	150 Wh
Weight	1.18 kg	0.85 kg
Dimensions	194mm x 221mm x 18mm	182mm x 221mm x 13mm

40% Greater Specific Energy (Wh/kg) than current model

177 Wh/kg

127 Wh/kg

EV cells that exceed USABC 2020 goals

SiNW/NCM622

ISO form factor VIFB-/99/300

Capacity: 46 Ah at C/3 rate (30°C)

Cell weight = 450.7g

Cell size = 6.0x96x288mm (body only)

Energy: 350 Wh/kg and 925 Wh/L

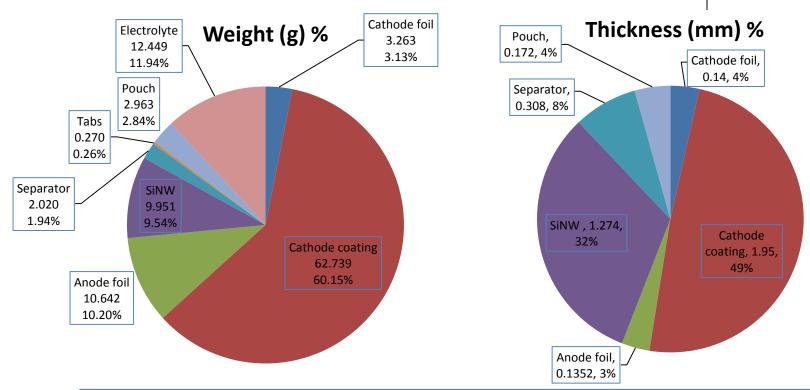
Peak Power: 830 W/kg and 2200 W/L

80% capacity charged in 15 minutes

Manufacturing Platform for Continuous Roll-to-Roll Anode Production

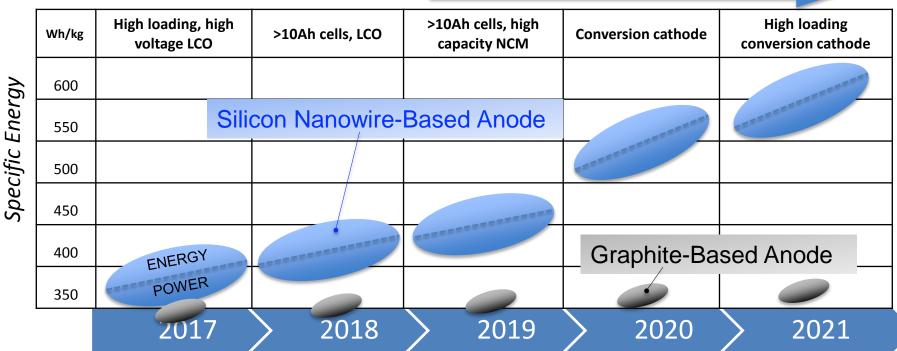
Replaces:

- Graphite powder mixing
- Slurry mixing
- Roll coating (2x)
- Drying
- Calendaring


Bare Foil In \rightarrow Finished Anode Out

- Pilot Tool capable of ~300 kWh/year
- At 100 MWh/year near \$/Ah parity with graphite but 40% higher energy density

Road Ahead: What components to improve?



The cathode material dominates both in weight and volume proportion

Si Nanowire Anode Specific Energy Roadmap

Cathode Improvement

Power/energy ratios are optimized in the design space (blue ellipses)

Thank You

Amprius wishes to acknowledge the funding received from US Army (Contract No. W911QY-12-C-0118), NASA (Contract No. NNC16CA10C), USABC (Project No. DE-EE0006250) and DOE (Award No. DE-EE0005474).

Ionel Stefan, (510) 512-5484, ionel@amprius.com
Jon Bornstein, (408) 406-2671, jonb@amprius.com