Space Power Workshop 2018

Ultralight Emissive Mirrors for Thermal Management in Space

Samuel Loke, Ali Naqavi, Emily C. Warmann, Pilar Espinet, Michael Kelzenberg, Ali Hajimiri, Sergio Pellegrino, Harry Atwater

Motivation: Space Solar Project Initiative

Radiative Laws: Stefan-Boltzmann Law and Steady State Power Balance

At Steady State, P_{net} =0, allowing us to solve for the blackbody temperature T_{Rad} at any given surface emissivity ϵ

Radiative Laws: Planck's Law for Blackbodies

Photovoltaic array modeling

Finite element model COMSOL Multiphysics including

- Surface to surface radiation
- Conductive heat transfer

Model validated using analytic and planar cell (no array) references

Controlling cell temperature

10 suns, 650 W/m² cell heat load (3J IMM at one sun)

Affect temperature with: Mirror emissivity Back side emissivity Aluminum thickness

Thermal Modelling

All assume:

- **650 W/m²** heat load (3J IMM)
- Back side emissivity 0.85

For mirror emissivity of 0.4 to 0.6 :

- Cell temps under 100 C with 3 um AI at 10 suns
- At 15 suns
 - 80 C with 10 μm Al
 - 100 C with 4 μm AI
- At 20 suns
 - 90 C with 10 μm AI
 - 100 C with 7 μ m Al

Salisbury Screen

Flat structure: easily implemented Potential for low mass per unit area Recently reported to be broadband in IR

Hocer et al, Scientific Reports Vol 5, No. 8157, 2015

Backside Emitter Optimization

Vary thicknesses of Cr and CPI to maximize Absorptivity Additional layer added to increase Absorptivity over the spectrum

Salisbury Screen Fabrication

Repeat Again for 2 Layer Salisbury Screen with appropriate thicknesses

Backside Emitter Results

Salisbury Screen Simulated Layer-by-Layer Analysis

Need for a Frontside Emitter

ITO Emissive Mirror Optimization

IR Emissivity at Different ITO and CP1 Thicknesses

RESEARCH GROUP

ITO Emissive Mirror Simulations

Calculated: Visible Reflectivity: 92.12%

IR Absorptivity: 57.73%

ITO Emissive Mirrors Results

Calculated: Visible Reflectivity: 92.12%

IR Absorptivity: 57.73%

Measured: Visible Reflectivity: 87.15%

IR Absorptivity: 62.06%

Thanks for Listening!

ACKNOWLEDGEMENTS: Will Wheatney, Dagney Fleischmann and theAtwater Team George Rossman, California Institute of Technology Mark Kruer & the Northrop Grumman Team Tom Tiwald, J.A. Woollam Ellipsometry Lynn Rodman, Nexolve Ryan France, NREL

